Suppr超能文献

基于多生物信号的多误差减少分类系统进行睡眠呼吸暂停检测。

Sleep Apnea Detection Using Multi-Error-Reduction Classification System with Multiple Bio-Signals.

机构信息

School of Biomedical Engineering, Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia.

Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hum, Hong Kong .

出版信息

Sensors (Basel). 2022 Jul 25;22(15):5560. doi: 10.3390/s22155560.

Abstract

INTRODUCTION

Obstructive sleep apnea (OSA) can cause serious health problems such as hypertension or cardiovascular disease. The manual detection of apnea is a time-consuming task, and automatic diagnosis is much more desirable. The contribution of this work is to detect OSA using a multi-error-reduction (MER) classification system with multi-domain features from bio-signals.

METHODS

Time-domain, frequency-domain, and non-linear analysis features are extracted from oxygen saturation (SaO2), ECG, airflow, thoracic, and abdominal signals. To analyse the significance of each feature, we design a two-stage feature selection. Stage 1 is the statistical analysis stage, and Stage 2 is the final feature subset selection stage using machine learning methods. In Stage 1, two statistical analyses (the one-way analysis of variance (ANOVA) and the rank-sum test) provide a list of the significance level of each kind of feature. Then, in Stage 2, the support vector machine (SVM) algorithm is used to select a final feature subset based on the significance list. Next, an MER classification system is constructed, which applies a stacking with a structure that consists of base learners and an artificial neural network (ANN) meta-learner.

RESULTS

The Sleep Heart Health Study (SHHS) database is used to provide bio-signals. A total of 66 features are extracted. In the experiment that involves a duration parameter, 19 features are selected as the final feature subset because they provide a better and more stable performance. The SVM model shows good performance (accuracy = 81.68%, sensitivity = 97.05%, and specificity = 66.54%). It is also found that classifiers have poor performance when they predict normal events in less than 60 s. In the next experiment stage, the time-window segmentation method with a length of 60s is used. After the above two-stage feature selection procedure, 48 features are selected as the final feature subset that give good performance (accuracy = 90.80%, sensitivity = 93.95%, and specificity = 83.82%). To conduct the classification, Gradient Boosting, CatBoost, Light GBM, and XGBoost are used as base learners, and the ANN is used as the meta-learner. The performance of this MER classification system has the accuracy of 94.66%, the sensitivity of 96.37%, and the specificity of 90.83%.

摘要

简介

阻塞性睡眠呼吸暂停(OSA)可导致严重的健康问题,如高血压或心血管疾病。呼吸暂停的手动检测是一项耗时的任务,自动诊断更为可取。这项工作的贡献是使用多错误减少(MER)分类系统从生物信号中检测 OSA 使用多域特征。

方法

从氧饱和度(SaO2)、心电图、气流、胸和腹信号中提取时域、频域和非线性分析特征。为了分析每个特征的重要性,我们设计了两阶段特征选择。第一阶段是统计分析阶段,第二阶段是使用机器学习方法的最终特征子集选择阶段。在第一阶段,两种统计分析(单向方差分析(ANOVA)和秩和检验)提供了每种特征的显著水平列表。然后,在第二阶段,支持向量机(SVM)算法根据显著列表选择最终特征子集。接下来,构建一个 MER 分类系统,该系统应用堆叠结构,由基础学习者和人工神经网络(ANN)元学习者组成。

结果

使用睡眠心脏健康研究(SHHS)数据库提供生物信号。共提取了 66 个特征。在涉及持续时间参数的实验中,选择了 19 个特征作为最终特征子集,因为它们提供了更好和更稳定的性能。SVM 模型表现良好(准确率=81.68%,灵敏度=97.05%,特异性=66.54%)。还发现,当预测持续时间小于 60 秒的正常事件时,分类器的性能较差。在下一个实验阶段,使用长度为 60s 的时间窗分段方法。经过上述两阶段特征选择过程后,选择 48 个特征作为最终特征子集,表现良好(准确率=90.80%,灵敏度=93.95%,特异性=83.82%)。为了进行分类,使用梯度提升、CatBoost、Light GBM 和 XGBoost 作为基础学习者,以及 ANN 作为元学习者。该 MER 分类系统的性能具有 94.66%的准确率、96.37%的灵敏度和 90.83%的特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/9371161/2fc20dfd4838/sensors-22-05560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验