Suppr超能文献

利用神经网络和嵌入在防护头盔中的传感器估算碰撞中的头部加速度。

Estimation of Head Accelerations in Crashes Using Neural Networks and Sensors Embedded in the Protective Helmet.

机构信息

Department of Industrial Engineering, University of Florence, 50139 Firenze, Italy.

出版信息

Sensors (Basel). 2022 Jul 26;22(15):5592. doi: 10.3390/s22155592.

Abstract

Traumatic Brain Injuries (TBIs) are one of the most frequent and severe outcomes of a Powered Two-Wheeler (PTW) crash. Early diagnosis and treatment can greatly reduce permanent consequences. Despite the fact that devices to track head kinematics have been developed for sports applications, they all have limitations, which hamper their use in everyday road applications. In this study, a new technical solution based on accelerometers integrated in a motorcycle helmet is presented, and the related methodology to estimate linear and rotational acceleration of the head with deep Artificial Neural Networks (dANNs) is developed. A finite element model of helmet coupled with a Hybrid III head model was used to generate data needed for the neural network training. Input data to the dANN model were time signals of (virtual) accelerometers placed on the inner surface of the helmet shell, while the output data were the components of linear and rotational head accelerations. The network was capable of estimating, with good accuracy, time patterns of the acceleration components in all impact conditions that require medical treatment. The correlation between the reference and estimated values was high for all parameters and for both linear and rotational acceleration, with coefficients of determination (R2) ranging from 0.91 to 0.97.

摘要

创伤性脑损伤(TBI)是动力两轮车(PTW)事故中最常见和最严重的后果之一。早期诊断和治疗可以大大减少永久性后果。尽管已经为运动应用开发了用于跟踪头部运动学的设备,但它们都存在局限性,这阻碍了它们在日常道路应用中的使用。在这项研究中,提出了一种基于集成在摩托车头盔中的加速度计的新技术解决方案,并开发了使用深度人工神经网络(dANN)估算头部线性和旋转加速度的相关方法。头盔的有限元模型与 Hybrid III 头部模型相结合,用于生成神经网络训练所需的数据。dANN 模型的输入数据是放置在头盔外壳内表面上的(虚拟)加速度计的时间信号,而输出数据是头部线性和旋转加速度的分量。该网络能够以较高的准确度估算所有需要医疗治疗的冲击条件下的加速度分量的时间模式。参考值和估计值之间的相关性对于所有参数以及线性和旋转加速度都很高,决定系数(R2)范围从 0.91 到 0.97。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8ad/9371112/9e6507706e1d/sensors-22-05592-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验