Suppr超能文献

类风湿关节炎先天免疫基因 CYFIP2 的分析和实验验证及泛癌分析

Analysis and Experimental Validation of Rheumatoid Arthritis Innate Immunity Gene CYFIP2 and Pan-Cancer.

机构信息

Department of Orthopaedics, The First Affiliated Hospital, Jinan University, Guangzhou, China.

Department of Orthopaedics, Panyu Hospital of Chinese Medicine, Guangzhou, China.

出版信息

Front Immunol. 2022 Jul 11;13:954848. doi: 10.3389/fimmu.2022.954848. eCollection 2022.

Abstract

Rheumatoid arthritis (RA) is a chronic, heterogeneous autoimmune disease. Its high disability rate has a serious impact on society and individuals, but there is still a lack of effective and reliable diagnostic markers and therapeutic targets for RA. In this study, we integrated RA patient information from three GEO databases for differential gene expression analysis. Additionally, we also obtained pan-cancer-related genes from the TCGA and GTEx databases. For RA-related differential genes, we performed functional enrichment analysis and constructed a weighted gene co-expression network (WGCNA). Then, we obtained 490 key genes by intersecting the significant module genes selected by WGCNA and the differential genes. After using the RanddomForest, SVM-REF, and LASSO three algorithms to analyze these key genes and take the intersection, based on the four core genes (BTN3A2, CYFIP2, ST8SIA1, and TYMS) that we found, we constructed an RA diagnosis. The nomogram model showed good reliability and validity after evaluation, and the ROC curves of the four genes showed that these four genes played an important role in the pathogenesis of RA. After further gene correlation analysis, immune infiltration analysis, and mouse gene expression validation, we finally selected CYFIP2 as the cut-in gene for pan-cancer analysis. The results of the pan-cancer analysis showed that CYFIP2 was closely related to the prognosis of patients with various tumors, the degree of immune cell infiltration, as well as TMB, MSI, and other indicators, suggesting that this gene may be a potential intervention target for human diseases including RA and tumors.

摘要

类风湿关节炎(RA)是一种慢性、异质性自身免疫性疾病。其高致残率对社会和个人都有严重影响,但目前仍缺乏有效的、可靠的 RA 诊断标志物和治疗靶点。本研究整合了三个 GEO 数据库中 RA 患者的信息进行差异基因表达分析,同时从 TCGA 和 GTEx 数据库获取泛癌相关基因。对 RA 相关差异基因进行功能富集分析,并构建加权基因共表达网络(WGCNA)。然后,通过 WGCNA 选择的显著模块基因与差异基因取交集,得到 490 个关键基因。再利用 RanddomForest、SVM-REF、LASSO 三种算法对这些关键基因进行分析并取交集,基于我们发现的 BTN3A2、CYFIP2、ST8SIA1、TYMS 这四个核心基因,构建 RA 诊断的列线图模型。经过评价,该模型具有良好的可靠性和有效性,四个基因的 ROC 曲线表明这四个基因在 RA 的发病机制中发挥着重要作用。经过进一步的基因相关性分析、免疫浸润分析和小鼠基因表达验证,最终选择 CYFIP2 作为泛癌分析的切入基因。泛癌分析的结果表明,CYFIP2 与多种肿瘤患者的预后、免疫细胞浸润程度以及 TMB、MSI 等指标密切相关,提示该基因可能是 RA 及肿瘤等人类疾病的潜在干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/9311328/11a625aa0c59/fimmu-13-954848-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验