Suppr超能文献

利用重复轨迹算法优化 FLASH 质子束。

Optimization of FLASH proton beams using a track-repeating algorithm.

机构信息

Department, of Physics and Astronomy, MS 315, Rice University, Houston, Texas, USA.

Department of Radiation Physics, Unit 1420, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

Med Phys. 2022 Oct;49(10):6684-6698. doi: 10.1002/mp.15849. Epub 2022 Aug 15.

Abstract

BACKGROUND

Radiation with high dose rate (FLASH) has shown to reduce toxicities to normal tissues around the target and maintain tumor control with the same amount of dose compared to conventional radiation. This phenomenon has been widely studied in electron therapy, which is often used for shallow tumor treatment. Proton therapy is considered a more suitable treatment modality for deep-seated tumors. The feasibility of FLASH proton therapy has recently been demonstrated by a series of pre- and clinical trials. One of the challenges is to efficiently generate wide enough dose distributions in both lateral and longitudinal directions to cover the entire tumor volume. The goal of this paper is to introduce a set of automatic FLASH proton beam optimization algorithms developed recently.

PURPOSE

To develop a fast and efficient optimizer for the design of a passive scattering proton FLASH radiotherapy delivery at The University of Texas MD Anderson Proton Therapy Center, based on the fast dose calculator (FDC).

METHODS

A track-repeating algorithm, FDC, was validated versus Geant4 simulations and applied to calculate dose distributions in various beamline setups. The design of the components was optimized to deliver homogeneous fields with well-defined diameters between 11.0 and 20.5 mm, as well as a spread-out Bragg peak (SOBP) with modulations between 8.5 and 39.0 mm. A ridge filter, a high-Z material scatterer, and a collimator with range compensator were inserted in the beam path, and their shapes and sizes were optimized to spread out the Bragg peak, widen the beam, and reduce the penumbra. The optimizer was developed and tested using two proton energies (87.0 and 159.5 MeV) in a variety of beamline arrangements. Dose rates of the optimized beams were estimated by scaling their doses to those of unmodified beams.

RESULTS

The optimized 87.0-MeV beams, with a distance from the beam pipe window to the phantom surface (window-to-surface distance [WSD]) of 550 mm, produced an 8.5-mm-wide SOBP (proximal 90% to distal 90% of the maximum dose); 14.5, 12.0, and 11.0-mm lateral widths at the 50%, 80%, and 90% dose location, respectively; and a 2.5-mm penumbra from 80% to 20% in the lateral profile. The 159.5-MeV beam had an SOBP of 39.0 mm and lateral widths of 20.5, 15.0, and 12.5 mm at 50%, 80%, and 90% dose location, respectively, when the WSD was 550 mm. Wider lateral widths were obtained with increased WSD. The SOBP modulations changed when the ridge filters with different characteristics were inserted. Dose rates on the beam central axis for all optimized beams (other than the 87.0-MeV beam with 2000-mm WSD) were above that needed for the FLASH effect threshold (40 Gy/s) except at the very end of the depth dose profile scaling with a dose rate of 1400 Gy/s at the Bragg peak in the unmodified beams. The optimizer was able to instantly design the individual beamline components for each of the beamline setups, without the need of time intensive iterative simulations.

CONCLUSION

An efficient system, consisting of an optimizer and an FDC have been developed and validated in a variety of beamline setups, comprising two proton energies, several WSDs, and SOBPs. The set of automatic optimization algorithms produces beam shaping element designs efficiently and with excellent quality.

摘要

背景

高剂量率(FLASH)辐射已被证明可以减少靶区周围正常组织的毒性,同时与常规辐射相比保持相同的剂量肿瘤控制。这种现象在电子治疗中得到了广泛的研究,电子治疗常用于浅层肿瘤的治疗。质子治疗被认为是深部肿瘤更合适的治疗方式。最近的一系列临床前和临床研究已经证明了 FLASH 质子治疗的可行性。其中一个挑战是如何有效地在横向和纵向方向上产生足够宽的剂量分布,以覆盖整个肿瘤体积。本文的目的是介绍最近开发的一套用于被动散射质子 FLASH 放射治疗的自动优化算法。

目的

基于快速剂量计算器(FDC),为德克萨斯大学 MD 安德森质子治疗中心的被动散射质子 FLASH 放射治疗设计开发一种快速有效的优化器。

方法

验证了一种重复跟踪算法 FDC 与 Geant4 模拟的一致性,并将其应用于计算各种射束线设置下的剂量分布。优化组件的设计,以提供直径为 11.0 至 20.5 毫米的均匀场,以及调制为 8.5 至 39.0 毫米的扩展布拉格峰(SOBP)。在射束路径中插入了一个脊滤波器、一种高 Z 物质散射体和一个带有射程补偿器的准直器,并优化了它们的形状和尺寸,以扩展布拉格峰、拓宽射束和减少半影。使用两种质子能量(87.0 和 159.5 MeV)在各种射束线布置中开发和测试了优化器。通过将其剂量与未修改射束的剂量进行缩放,估计了优化射束的剂量率。

结果

优化的 87.0 MeV 射束,在射束管窗口到体模表面的距离(窗到表面距离 [WSD])为 550 毫米时,产生了 8.5 毫米宽的 SOBP(最大剂量的近端 90%到远端 90%);在 50%、80%和 90%剂量位置处的横向宽度分别为 14.5、12.0 和 11.0 毫米;在横向轮廓中,从 80%到 20%的半影为 2.5 毫米。当 WSD 为 550 毫米时,159.5 MeV 射束的 SOBP 为 39.0 毫米,在 50%、80%和 90%剂量位置处的横向宽度分别为 20.5、15.0 和 12.5 毫米。增加 WSD 可获得更宽的横向宽度。插入具有不同特性的脊滤波器会改变 SOBP 的调制。所有优化射束(WSD 为 2000 毫米的 87.0 MeV 射束除外)的射束中心轴上的剂量率均高于 FLASH 效应阈值(40 Gy/s),除了在深度剂量分布的末端,剂量率为 1400 Gy/s,在未修改射束的布拉格峰处。优化器能够即时为每个射束线设置设计单个射束线组件,而无需进行时间密集型迭代模拟。

结论

在多种射束线设置中,包括两种质子能量、多个 WSD 和 SOBP,开发并验证了一种由优化器和 FDC 组成的高效系统。这组自动优化算法能够高效地生成高质量的射束成型元件设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验