Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States.
Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California 94304, United States.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35376-35388. doi: 10.1021/acsami.2c07326. Epub 2022 Jul 28.
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)在肌节组织、收缩机制、钙瞬变和转录组特征方面被认为不成熟,这阻碍了它们在心脏发育和疾病建模和研究中的进一步应用。为了提高 hiPSC-CMs 的成熟度,在这里,我们通过基于掩模的微图案化方法将 hiPSC-CMs 工程化为心脏微纤维(iCMFs),这使得 hiPSC-CMs 能够在水凝胶的生理刚度上进行长时间的端到端连接培养。我们进行了一系列特征化方法来评估 iCMFs 在结构和功能水平上的成熟度,包括免疫组织化学、钙瞬变、逆转录定量 PCR、心脏收缩性和电起搏分析。我们的结果表明,与微图案化或随机单个 hiPSC-CMs 以及相同细胞数的 iCMFs 中的随机 hiPSC-CM 簇相比,iCMFs 中的 hiPSC-CMs 在心脏成熟度上得到了改善。我们发现肌节长度增加,肌节的规律性和对齐性更好,收缩性增强,钙瞬变成熟,T 管形成,黏附连接和缝隙连接形成得到改善。iCMFs 中的 hiPSC-CMs 在 0.5 至 7 Hz 的程控和连续电起搏下显示出稳健的钙循环。此外,我们用肌球蛋白结合蛋白 C(MYBPC3)突变的 hiPSC-CMs 生成了 iCMFs,以证明 iCMFs 在建模心脏肥厚表型中的概念验证。这些发现表明,hiPSC-CMs 的多图案 iCMF 连接在结构和功能上促进了心脏成熟,这将揭示 hiPSC-CM 模型在心肌病和心脏再生医学疾病建模中的应用的全部潜力。