Lane Kerry V, Dow Liam P, Castillo Erica A, Boros Rémi, Feinstein Samuel D, Pardon Gaspard, Pruitt Beth L
Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):174-186. doi: 10.1021/acsami.4c11934. Epub 2024 Dec 16.
Controlling cellular shape with micropatterning extracellular matrix (ECM) proteins on hydrogels has been shown to improve the reproducibility of the cell structure, enhancing our ability to collect statistics on single-cell behaviors. Patterning methods have advanced efforts in developing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a promising human model for studies of the heart structure, function, and disease. Patterned single hiPSC-CMs have exhibited phenotypes closer to mature, primary CMs across several metrics, including sarcomere alignment and contractility, area and aspect ratio, and force production. Micropatterning of hiPSC-CM pairs has shown further improvement of hiPSC-CM contractility compared to patterning single cells, suggesting that CM-CM interactions improve hiPSC-CM function. However, whether patterning single hiPSC-CMs on a protein associated with CM-CM adhesion, like N-cadherin, can drive similar enhancement of the hiPSC-CM structure and function has not been tested. To address this, we developed a novel dual-protein patterning process featuring covalent binding of proteins at the hydrogel surface to ensure robust force transfer and force sensing. The patterns comprised rectangular laminin islands for attachment across the majority of the cell area, with N-cadherin "end caps" to imitate CM-CM adherens junctions. We used this method to geometrically control single-cell CMs on deformable hydrogels suitable for traction force microscopy (TFM) to observe cellular dynamics. We seeded α-actinin::GFP-tagged hiPSC-CMs on dual-protein patterned hydrogels and verified the interaction between hiPSC-CMs and N-cadherin end caps via immunofluorescent staining. We found that hiPSC-CMs on dual-protein patterns exhibited higher cell area and contractility in the direction of sarcomere organization than those on laminin-only patterns but no difference in sarcomere organization or total force production. This work demonstrates a method for covalent patterning of multiple proteins on polyacrylamide hydrogels for mechanobiological studies. However, we conclude that N-cadherin only modestly improves single-cell patterned hiPSC-CM models and is not sufficient to elicit increases in contractility observed in hiPSC-CM pairs.
通过在水凝胶上微图案化细胞外基质(ECM)蛋白来控制细胞形状,已被证明可以提高细胞结构的可重复性,增强我们收集单细胞行为统计数据的能力。图案化方法在将人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)开发为用于心脏结构、功能和疾病研究的有前景的人体模型方面取得了进展。在包括肌节排列和收缩性、面积和纵横比以及力产生等多个指标上,图案化的单个hiPSC-CMs表现出更接近成熟原代心肌细胞的表型。与图案化单个细胞相比,hiPSC-CM对的微图案化显示出hiPSC-CM收缩性的进一步改善,这表明心肌细胞-心肌细胞相互作用改善了hiPSC-CM的功能。然而,在与心肌细胞-心肌细胞粘附相关的蛋白(如N-钙粘蛋白)上图案化单个hiPSC-CMs是否能驱动hiPSC-CM结构和功能的类似增强尚未得到测试。为了解决这个问题,我们开发了一种新颖的双蛋白图案化工艺,其特点是在水凝胶表面共价结合蛋白,以确保强大的力传递和力传感。图案包括用于在大部分细胞区域附着的矩形层粘连蛋白岛,以及用于模拟心肌细胞-心肌细胞粘附连接的N-钙粘蛋白“端帽”。我们使用这种方法在适用于牵引力显微镜(TFM)的可变形水凝胶上对单细胞心肌细胞进行几何控制,以观察细胞动力学。我们将α-肌动蛋白::GFP标记的hiPSC-CMs接种在双蛋白图案化的水凝胶上,并通过免疫荧光染色验证了hiPSC-CMs与N-钙粘蛋白端帽之间的相互作用。我们发现,与仅具有层粘连蛋白图案的hiPSC-CMs相比,双蛋白图案上的hiPSC-CMs在肌节组织方向上表现出更高的细胞面积和收缩性,但在肌节组织或总力产生方面没有差异。这项工作展示了一种在聚丙烯酰胺水凝胶上对多种蛋白进行共价图案化以用于力学生物学研究的方法。然而,我们得出结论,N-钙粘蛋白仅适度改善了单细胞图案化的hiPSC-CM模型,不足以引发在hiPSC-CM对中观察到的收缩性增加。