Suppr超能文献

微升规模合成封装荧光素酶的聚合物囊泡作为人工细胞器,用于光遗传学调控心肌细胞搏动。

Microliter Scale Synthesis of Luciferase-Encapsulated Polymersomes as Artificial Organelles for Optogenetic Modulation of Cardiomyocyte Beating.

机构信息

Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.

出版信息

Adv Sci (Weinh). 2022 Sep;9(27):e2200239. doi: 10.1002/advs.202200239. Epub 2022 Jul 28.

Abstract

Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.

摘要

构建能够在细胞内有效替代或补充天然生物机制的人工系统是生物工程的基本挑战之一。在亚细胞尺度上,人工细胞器(AO)具有作为长效生物医学植入物的巨大潜力,通过进行细胞内隔室化的酶促反应来模拟天然细胞器。当与基因工程巧妙结合时,这些 AO 的效力可以得到提高,从而产生高度可定制的生物杂交细胞系统。在这里,作者提出了一种基于聚合诱导自组装的经济高效、微升规模(10μL)聚合物囊泡(PSome)合成方法,用于原位封装 Gaussia 荧光素酶(GLuc),作为一种模型发光酶。这些负载 GLuc 的 PSomes 具有 AO 的理想特征,包括增强对热、蛋白水解和细胞内应激的酶抗性。为了证明它们的生物调节潜力,将负载 GLuc 的 PSomes 的细胞内发光与光遗传工程化的心肌细胞偶联,通过用 CTZ(GLuc 的底物)处理来调节心脏跳动频率。发光 AO 的长期细胞内稳定性使得即使在培养 7 天后,用新鲜 CTZ 也可以重新启动这种心脏刺激现象。因此,这种具有仿生功能的合成材料与基因工程的协同结合被设想为一种生成具有独特触发特性的新型生物杂交细胞系统的高度通用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42bd/9507352/6f7c5573c6cc/ADVS-9-2200239-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验