Department of Computer Science, Faculty of Pure and Applied Sciences, Federal University Wukari, P. M. B. 1020, Wukari, Taraba State, Nigeria.
Department of Academic and Distance Learning Programmes, Michael Imoudu National Institute for Labour Studies, P. M. B. 1524, Ilorin, Nigeria.
Comput Biol Med. 2022 Sep;148:105850. doi: 10.1016/j.compbiomed.2022.105850. Epub 2022 Jul 19.
Patient admission scheduling (PAS) is a tasking combinatorial optimization problem where a set of patients is assigned to limited facilities such as rooms, timeslots, and beds subject to satisfying a set of predefined constraints. The investigations into the performance of population-based algorithms that utilized to tackle the PAS problem considered in this paper reveal their weaknesses in obtaining quality solutions that create a space to investigate the performance of another population-based method. Thus, in this paper, an Artificial Bee Colony Algorithm (ABC) is proposed to tackle the formulation of the PAS problem under consideration. It is a class of swarm intelligence metaheuristic algorithms based on the intelligent foraging behaviour of honey bees developed to solve continuous and complex optimization problems. Due to the discretization of the PAS, the continuous nature of the ABC algorithm is changed to cope with the rugged solution space of the PAS. The initial feasible solution to the PAS problem is obtained using the room-oriented approach. Then the ABC algorithm optimizes the feasible solutions with the aid of three neighbourhood structures embedded within the employed bee and the onlooker bee operators of the algorithm. The performance of the proposed ABC algorithm based on three different parameters, the solution number (SN), limit value (LV), and the maximum cycle number (MCN) is evaluated on six standard benchmark datasets of the PAS. Two of these main parameters (i.e. SN and LV) are fine-tuned to obtain the best solutions on instances like Test-data 1 = 679.80, Test-data 2 = 1180.40, Test-data 3 = 787.40, Test-data 4 = 1198.60, Test-data 5 = 636.80, and Test-data 6 = 818.60. The best solutions obtained by the proposed method are evaluated against the results of the 19 comparative algorithms comprising five population-based methods, eleven heuristic, and hyperheuristic-based methods, and three integer programming-based methods. The proposed method shows its supremacy in the performance by achieving the best results in all the instances of the dataset when compared with five population-based methods (DFPA, HSA, MBBO-GBS, BBO-GBS, and BBO-RBS) and producing the best results in five instances when compared with eleven heuristic and hyperheuristic-based methods (LAHC, DHS-GD, HTS, DHS-SA, ADAPTIVE GD, GD, HH-GD, DHS-IO, HH-SA, HH-IE, TA) and Finally, it had a competitive performance with the other three Integer programming methods (MIP warm start, MIP-Heuristic, CG) that worked on the same formulations of the PAS. In a nutshell, the proposed ABC algorithm could be adopted as a new template algorithm for the PAS community.
患者入院安排(PAS)是一个组合优化问题,其中一组患者被分配到有限的设施中,例如房间、时段和床位,同时要满足一组预定义的约束条件。本文对用于解决 PAS 问题的基于种群的算法的性能进行了研究,结果表明这些算法在获得高质量解决方案方面存在弱点,这为研究另一种基于种群的方法的性能提供了空间。因此,本文提出了一种用于解决所考虑的 PAS 问题的人工蜂群算法(ABC)。它是一类基于蜜蜂智能觅食行为的群体智能元启发式算法,旨在解决连续和复杂的优化问题。由于 PAS 的离散化,ABC 算法的连续性被改变以适应 PAS 的崎岖解决方案空间。使用面向房间的方法获得 PAS 问题的初始可行解。然后,ABC 算法利用算法中的雇佣蜜蜂和观察蜜蜂算子嵌入的三个邻域结构来优化可行解。基于三个不同参数(即解数(SN)、极限值(LV)和最大循环数(MCN))的提出的 ABC 算法的性能在 PAS 的六个标准基准数据集上进行了评估。这两个主要参数(即 SN 和 LV)进行了微调,以便在实例上获得最佳解决方案,例如 Test-data 1 = 679.80、Test-data 2 = 1180.40、Test-data 3 = 787.40、Test-data 4 = 1198.60、Test-data 5 = 636.80 和 Test-data 6 = 818.60。与包含五个基于种群的方法、十一个启发式和超启发式方法以及三个基于整数规划的方法的 19 个比较算法的结果相比,提出的方法在所有数据集实例中都表现出了优越性,并且在与五个基于种群的方法(DFPA、HSA、MBBO-GBS、BBO-GBS 和 BBO-RBS)相比时,在所有实例中都取得了最佳结果,与十一个启发式和超启发式方法(LAHC、DHS-GD、HTS、DHS-SA、ADAPTIVE GD、GD、HH-GD、DHS-IO、HH-SA、HH-IE、TA)相比时,在五个实例中取得了最佳结果。最后,它与其他三个在相同的 PAS 公式上工作的整数规划方法(MIP 预热、MIP-启发式、CG)具有竞争力。总之,提出的 ABC 算法可以作为 PAS 社区的新模板算法。