Suppr超能文献

凯撒永久医疗集团北加州预警监测项目:一种用于住院患者临床恶化风险成人的自动化预警系统。

The Kaiser Permanente Northern California Advance Alert Monitor Program: An Automated Early Warning System for Adults at Risk for In-Hospital Clinical Deterioration.

出版信息

Jt Comm J Qual Patient Saf. 2022 Aug;48(8):370-375. doi: 10.1016/j.jcjq.2022.05.005.

Abstract

BACKGROUND

In-hospital deterioration among ward patients is associated with substantially increased adverse outcome rates. In 2013 Kaiser Permanente Northern California (KPNC) developed and implemented a predictive analytics-driven program, Advance Alert Monitor (AAM), to improve early detection and intervention for in-hospital deterioration. The AAM predictive model is designed to give clinicians 12 hours of lead time before clinical deterioration, permitting early detection and a patient goals-concordant response to prevent worsening.

DESIGN OF THE AAM INTERVENTION

Across the 21 hospitals of the KPNC integrated health care delivery system, AAM analyzes electronic health record (EHR) data for patients in medical/surgical and telemetry units 24 hours a day, 7 days a week. Patients identified as high risk by the AAM algorithm trigger an alert for a regional team of experienced critical care virtual quality nurse consultants (VQNCs), who then cascade validated, actionable information to rapid response team (RRT) nurses at local hospitals. RRT nurses conduct bedside assessments of at-risk patients and formulate interdisciplinary clinical responses with hospital-based physicians, bedside nurses, and supportive care teams to ensure a well-defined escalation plan that includes clarification of the patients' goals of care.

SUCCESS OF THE INTERVENTION

Since 2019 the AAM program has been implemented at all 21 KPNC hospitals. The use of predictive modeling embedded within the EHR to identify high-risk patients has produced the standardization of monitoring workflows, clinical rescue protocols, and coordination to ensure that care is consistent with patients' individual goals of care. An evaluation of the program, using a staggered deployment sequence over 19 hospitals, demonstrates that the AAM program is associated with statistically significant decreases in mortality (9.8% vs. 14.4%), hospital length of stay, and ICU length of stay. Statistical analyses estimated that more than 500 deaths were prevented each year with the AAM program.

LESSONS LEARNED

Unlocking the potential of predictive modeling in the EHR is the first step toward realizing the promise of artificial intelligence/machine learning (AI/ML) to improve health outcomes. The AAM program leveraged predictive analytics to produce highly reliable care by identifying at-risk patients, preventing deterioration, and reducing adverse outcomes and can be used as a model for how clinical decision support and inpatient population management can effectively improve care.

摘要

背景

住院患者院内恶化与不良结局发生率显著增加有关。2013 年,凯撒永久医疗集团北加州分公司(KPNC)开发并实施了一个基于预测分析的程序,即提前警报监测器(AAM),以改善对院内恶化的早期检测和干预。AAM 预测模型旨在为临床医生提供 12 小时的提前时间,以便在临床恶化之前进行早期检测,并对患者进行目标一致的反应,以防止病情恶化。

AAM 干预措施的设计:在 KPNC 综合医疗服务提供系统的 21 家医院中,AAM 每天 24 小时、每周 7 天分析医疗/外科和遥测病房患者的电子健康记录(EHR)数据。AAM 算法识别为高风险的患者会触发区域经验丰富的重症监护虚拟质量护士顾问(VQNC)团队的警报,然后将经过验证的、可操作的信息分发给当地医院的快速反应团队(RRT)护士。RRT 护士对高危患者进行床边评估,并与医院内的医生、床边护士和支持性护理团队一起制定跨学科临床反应,以确保制定明确的升级计划,包括澄清患者的护理目标。

干预措施的成功

自 2019 年以来,AAM 计划已在 KPNC 的所有 21 家医院实施。在电子健康记录中嵌入预测模型来识别高风险患者,已经产生了监测工作流程、临床救援协议和协调的标准化,以确保护理符合患者的个人护理目标。对该计划的评估,使用在 19 家医院进行的交错部署序列,表明 AAM 计划与死亡率(9.8%比 14.4%)、住院时间和 ICU 住院时间的统计学显著下降相关。统计分析估计,每年有超过 500 人因 AAM 计划而避免死亡。

经验教训

在电子健康记录中解锁预测模型的潜力是实现人工智能/机器学习(AI/ML)改善健康结果的承诺的第一步。AAM 计划利用预测分析通过识别高危患者、防止恶化以及减少不良结果来提供高度可靠的护理,并可作为临床决策支持和住院人群管理如何有效改善护理的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验