Feldotto Benedikt, Soare Cristian, Knoll Alois, Sriya Piyanee, Astill Sarah, de Kamps Marc, Chakrabarty Samit
Robotics, Artificial Intelligence and Real-Time Systems, Technical University of Munich, Munich, Germany.
School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
Front Neurorobot. 2022 Jul 12;16:856797. doi: 10.3389/fnbot.2022.856797. eCollection 2022.
Although we can measure muscle activity and analyze their activation patterns, we understand little about how individual muscles affect the joint torque generated. It is known that they are controlled by circuits in the spinal cord, a system much less well-understood than the cortex. Knowing the contribution of the muscles toward a joint torque would improve our understanding of human limb control. We present a novel framework to examine the control of biomechanics using physics simulations informed by electromyography (EMG) data. These signals drive a virtual musculoskeletal model in the Neurorobotics Platform (NRP), which we then use to evaluate resulting joint torques. We use our framework to analyze raw EMG data collected during an isometric knee extension study to identify synergies that drive a musculoskeletal lower limb model. The resulting knee torques are used as a reference for genetic algorithms (GA) to generate new simulated activation patterns. On the platform the GA finds solutions that generate torques matching those observed. Possible solutions include synergies that are similar to those extracted from the human study. In addition, the GA finds activation patterns that are different from the biological ones while still producing the same knee torque. The NRP forms a highly modular integrated simulation platform allowing these experiments. We argue that our framework allows for research of the neurobiomechanical control of muscles during tasks, which would otherwise not be possible.
虽然我们能够测量肌肉活动并分析其激活模式,但对于单个肌肉如何影响所产生的关节扭矩,我们了解得很少。已知它们由脊髓中的回路控制,而脊髓系统远不如皮质那样被人们所熟知。了解肌肉对关节扭矩的贡献将有助于我们更好地理解人类肢体控制。我们提出了一个新颖的框架,利用由肌电图(EMG)数据提供信息的物理模拟来研究生物力学控制。这些信号驱动神经机器人平台(NRP)中的虚拟肌肉骨骼模型,然后我们用该模型来评估产生的关节扭矩。我们使用我们的框架来分析在等长膝关节伸展研究期间收集的原始EMG数据,以识别驱动肌肉骨骼下肢模型的协同作用。所产生的膝关节扭矩被用作遗传算法(GA)的参考,以生成新的模拟激活模式。在该平台上,遗传算法找到能产生与观察到的扭矩相匹配的解决方案。可能的解决方案包括与从人体研究中提取的协同作用相似的协同作用。此外,遗传算法还能找到与生物模式不同但仍能产生相同膝关节扭矩的激活模式。神经机器人平台形成了一个高度模块化的集成模拟平台,使这些实验得以进行。我们认为,我们的框架能够对任务期间肌肉的神经生物力学控制进行研究,否则这是不可能实现的。