Suppr超能文献

血清稳定且选择性的骨干-N-甲基化环肽,可抑制原核糖解代谢酶。

Serum-Stable and Selective Backbone-N-Methylated Cyclic Peptides That Inhibit Prokaryotic Glycolytic Mutases.

机构信息

Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

出版信息

ACS Chem Biol. 2022 Aug 19;17(8):2284-2295. doi: 10.1021/acschembio.2c00403. Epub 2022 Jul 29.

Abstract

-Methylated amino acids (-MeAAs) are privileged residues of naturally occurring peptides critical to bioactivity. However, discovery from ribosome display is limited by poor incorporation of -methylated amino acids into the nascent peptide chain attributed to a poor EF-Tu affinity for the -methyl-aminoacyl-tRNA. By reconfiguring the tRNA's T-stem region to compensate and tune the EF-Tu affinity, we conducted Random nonstandard Peptides Integrated Discovery (RaPID) display of a macrocyclic peptide (MCP) library containing six different -MeAAs. We have here devised a "pool-and-split" enrichment strategy using the RaPID display and identified -methylated MCPs against three species of prokaryotic metal-ion-dependent phosphoglycerate mutases. The enriched MCPs reached 57% -methylation with up to three consecutively incorporated -MeAAs, rivaling natural products. Potent nanomolar inhibitors ranging in ortholog selectivity, strongly mediated by -methylation, were identified. Co-crystal structures reveal an architecturally related Ce-2 Ipglycermide active-site metal-ion-coordinating Cys lariat MCP, functionally dependent on two -MeAAs with broadened iPGM species selectivity over the original nematode-selective MCPs. Furthermore, the isolation of a novel metal-ion-independent iPGM inhibitor utilizing a phosphoglycerate mimetic mechanism illustrates the diversity of possible chemotypes encoded by the -MeAA MCP library.

摘要

-甲基氨基酸(-MeAAs)是天然存在的肽类生物活性的关键优势残基。然而,由于核糖体展示中 -甲基氨基酸掺入新生肽链的效率较差,限制了其发现,这归因于 EF-Tu 对 -甲基氨酰-tRNA 的亲和力较差。通过重新配置 tRNA 的 T 茎区域进行补偿和调整 EF-Tu 的亲和力,我们对包含六个不同 -MeAAs 的大环肽(MCP)文库进行了随机非标准肽综合发现(RaPID)展示。我们在这里设计了一种“pool-and-split”富集策略,使用 RaPID 展示并鉴定了针对三种原核金属离子依赖性磷酸甘油酸变位酶的 -甲基化 MCP。富集的 MCP 达到了 57%的 -甲基化,最多可连续掺入三个 -MeAAs,与天然产物相当。鉴定出具有强效纳米摩尔抑制作用的同系物选择性,强烈受 -甲基化调节。共晶结构揭示了一种结构相关的 Ce-2 Ipglycermide 活性位点金属离子配位半胱氨酸套索 MCP,功能上依赖于两个 -MeAAs,对原始线虫选择性 MCP 具有更广泛的 iPGM 物种选择性。此外,利用磷酸甘油酸类似物机制分离出一种新型的非金属离子依赖性 iPGM 抑制剂,说明了 -MeAA MCP 文库编码的可能化学型的多样性。

相似文献

1
Serum-Stable and Selective Backbone-N-Methylated Cyclic Peptides That Inhibit Prokaryotic Glycolytic Mutases.
ACS Chem Biol. 2022 Aug 19;17(8):2284-2295. doi: 10.1021/acschembio.2c00403. Epub 2022 Jul 29.
2
Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation.
Nucleic Acids Res. 2021 Nov 8;49(19):10807-10817. doi: 10.1093/nar/gkab288.
3
The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
Acc Chem Res. 2021 Sep 21;54(18):3604-3617. doi: 10.1021/acs.accounts.1c00391. Epub 2021 Sep 10.
4
Structure-activity relationship of ipglycermide binding to phosphoglycerate mutases.
J Biol Chem. 2021 Jan-Jun;296:100628. doi: 10.1016/j.jbc.2021.100628. Epub 2021 Apr 1.
5
Ribosomal incorporation of negatively charged d-α- and -methyl-l-α-amino acids enhanced by EF-Sep.
Philos Trans R Soc Lond B Biol Sci. 2023 Feb 27;378(1871):20220038. doi: 10.1098/rstb.2022.0038. Epub 2023 Jan 11.
8
Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation.
Nucleic Acids Res. 2017 Dec 15;45(22):12601-12610. doi: 10.1093/nar/gkx1129.

引用本文的文献

1
Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria.
ACS Chem Biol. 2025 Aug 15;20(8):1962-1979. doi: 10.1021/acschembio.5c00330. Epub 2025 Aug 1.
2
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
4
A general assay platform to study protein pharmacology using ligand-dependent structural dynamics.
Nat Commun. 2025 May 10;16(1):4342. doi: 10.1038/s41467-025-59658-6.
5
Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria.
bioRxiv. 2025 Mar 12:2025.01.17.633618. doi: 10.1101/2025.01.17.633618.
6
Reprogramming the genetic code with flexizymes.
Nat Rev Chem. 2024 Dec;8(12):879-892. doi: 10.1038/s41570-024-00656-5. Epub 2024 Oct 21.
7
Cyclic β-amino acids improve the serum stability of macrocyclic peptide inhibitors targeting the SARS-CoV-2 main protease.
Bull Chem Soc Jpn. 2024 Mar 6;97(5):uoae018. doi: 10.1093/bulcsj/uoae018. eCollection 2024 May.
8
Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.
Chem Rev. 2024 May 22;124(10):6444-6500. doi: 10.1021/acs.chemrev.3c00894. Epub 2024 Apr 30.
9
Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation.
J Am Chem Soc. 2024 Feb 21;146(7):4582-4591. doi: 10.1021/jacs.3c10949. Epub 2024 Feb 8.
10
Synthesis and in vitro Metabolic Stability of Sterically Shielded Antimycobacterial Phenylalanine Amides.
ChemMedChem. 2024 Mar 15;19(6):e202300593. doi: 10.1002/cmdc.202300593. Epub 2024 Feb 29.

本文引用的文献

1
OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space.
J Chem Theory Comput. 2021 Jul 13;17(7):4291-4300. doi: 10.1021/acs.jctc.1c00302. Epub 2021 Jun 7.
2
Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation.
Nucleic Acids Res. 2021 Nov 8;49(19):10807-10817. doi: 10.1093/nar/gkab288.
3
Structure-activity relationship of ipglycermide binding to phosphoglycerate mutases.
J Biol Chem. 2021 Jan-Jun;296:100628. doi: 10.1016/j.jbc.2021.100628. Epub 2021 Apr 1.
4
Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids.
Nat Chem. 2020 Nov;12(11):1081-1088. doi: 10.1038/s41557-020-0525-1. Epub 2020 Aug 24.
5
Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21571-21577. doi: 10.1002/anie.202004550. Epub 2020 Sep 17.
6
Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies.
Front Chem. 2020 Jun 18;8:447. doi: 10.3389/fchem.2020.00447. eCollection 2020.
7
RNA Display Methods for the Discovery of Bioactive Macrocycles.
Chem Rev. 2019 Sep 11;119(17):10360-10391. doi: 10.1021/acs.chemrev.8b00430. Epub 2018 Nov 5.
9
Polder maps: improving OMIT maps by excluding bulk solvent.
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):148-157. doi: 10.1107/S2059798316018210.
10
A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets.
Chem Commun (Camb). 2017 Feb 7;53(12):1931-1940. doi: 10.1039/c6cc06951g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验