Ramos Pablo Miguel, Herranz Miguel, Martínez-Fernández Daniel, Foteinopoulou Katerina, Laso Manuel, Karayiannis Nikos Ch
Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
J Phys Chem B. 2022 Aug 11;126(31):5931-5947. doi: 10.1021/acs.jpcb.2c03424. Epub 2022 Jul 29.
We present results from extensive Monte Carlo simulations on the crystallization of athermal polymers under full confinement. Polymers are represented as freely jointed chains of tangent hard spheres of uniform size. Confinement is applied through the presence of flat, parallel, and impenetrable walls in all dimensions. We analyze crystallization as the summation of two contributions: one that occurs in the bulk volume of the system (bulk crystallization), and one on the wall surfaces (surface crystallization). Depending on volume fraction initially amorphous (disordered) hard-sphere chain packings transit to the stable crystal phase. The established ordered morphologies consist primarily of hexagonal close-packed (HCP) crystals in the bulk volume and of triangular (TRI) crystals on the surface. As in the case of athermal packings in the bulk (without confinement), a structural competition is observed between the 5-fold local symmetry and the formation of close-packed crystallites. Effectively, the full confinement inside a cube favors the growth of the HCP crystal, as the FCC one is quite incompatible with the imposed spatial constraints. Consequently, we observe the formation of noncompact ordered motifs which grow from the surface to the inner volume of the simulation cell. We further compare the 2D and 3D crystals formed by monomeric hard spheres under the same simulation conditions. Significant differences are observed at low densities that tend to diminish as concentration increases.
我们展示了在完全受限条件下对无热聚合物结晶进行广泛蒙特卡罗模拟的结果。聚合物被表示为大小均匀的切向硬球的自由连接链。通过在所有维度上存在平坦、平行且不可穿透的壁来施加限制。我们将结晶分析为两种贡献的总和:一种发生在系统的主体体积中(主体结晶),另一种发生在壁表面上(表面结晶)。取决于初始无定形(无序)硬球链堆积的体积分数,其会转变为稳定的晶相。已确定的有序形态主要由主体体积中的六方密堆积(HCP)晶体和表面上的三角形(TRI)晶体组成。与主体中(无限制)的无热堆积情况一样,在 5 重局部对称性和密堆积微晶的形成之间观察到结构竞争。实际上,立方体内的完全限制有利于 HCP 晶体的生长,因为面心立方(FCC)晶体与所施加的空间约束相当不兼容。因此,我们观察到从模拟单元的表面向内体积生长的非致密有序图案的形成。我们还比较了在相同模拟条件下由单体硬球形成的二维和三维晶体。在低密度下观察到显著差异,随着浓度增加这些差异趋于减小。