Suppr超能文献

深度部分容积校正(DeepPVC):通过深度卷积神经网络预测脑正电子发射断层扫描研究的部分容积校正图。

DeepPVC: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network.

作者信息

Matsubara Keisuke, Ibaraki Masanobu, Kinoshita Toshibumi

机构信息

Department of Management Science and Engineering, Faculty of System Science and Technology, Akita Prefectural University, 84-4 Aza Ebinokuchi Tsuchiya, Yurihonjo, 015-0055, Japan.

Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, 010-0874, Japan.

出版信息

EJNMMI Phys. 2022 Jul 30;9(1):50. doi: 10.1186/s40658-022-00478-8.

Abstract

BACKGROUND

Partial volume correction with anatomical magnetic resonance (MR) images (MR-PVC) is useful for accurately quantifying tracer uptake on brain positron emission tomography (PET) images. However, MR segmentation processes for MR-PVC are time-consuming and prevent the widespread clinical use of MR-PVC. Here, we aimed to develop a deep learning model to directly predict PV-corrected maps from PET and MR images, ultimately improving the MR-PVC throughput.

METHODS

We used MR T1-weighted and [C]PiB PET images as input data from 192 participants from the Alzheimer's Disease Neuroimaging Initiative database. We calculated PV-corrected maps as the training target using the region-based voxel-wise PVC method. Two-dimensional U-Net model was trained and validated by sixfold cross-validation with the dataset from the 156 participants, and then tested using MR T1-weighted and [C]PiB PET images from 36 participants acquired at sites other than the training dataset. We calculated the structural similarity index (SSIM) of the PV-corrected maps and intraclass correlation (ICC) of the PV-corrected standardized uptake value between the region-based voxel-wise (RBV) PVC and deepPVC as indicators for validation and testing.

RESULTS

A high SSIM (0.884 ± 0.021) and ICC (0.921 ± 0.042) were observed in the validation and test data (SSIM, 0.876 ± 0.028; ICC, 0.894 ± 0.051). The computation time required to predict a PV-corrected map for a participant (48 s without a graphics processing unit) was much shorter than that for the RBV PVC and MR segmentation processes.

CONCLUSION

These results suggest that the deepPVC model directly predicts PV-corrected maps from MR and PET images and improves the throughput of MR-PVC by skipping the MR segmentation processes.

摘要

背景

利用解剖磁共振(MR)图像进行部分容积校正(MR-PVC)有助于在脑正电子发射断层扫描(PET)图像上准确量化示踪剂摄取。然而,MR-PVC的MR分割过程耗时,阻碍了MR-PVC在临床中的广泛应用。在此,我们旨在开发一种深度学习模型,直接从PET和MR图像预测经部分容积校正的图像,最终提高MR-PVC的通量。

方法

我们使用来自阿尔茨海默病神经影像倡议数据库的192名参与者的MR T1加权图像和[C]PiB PET图像作为输入数据。我们使用基于区域的体素级PVC方法计算经部分容积校正的图像作为训练目标。二维U-Net模型通过对156名参与者的数据进行六重交叉验证进行训练和验证,然后使用来自训练数据集以外站点的36名参与者的MR T1加权图像和[C]PiB PET图像进行测试。我们计算经部分容积校正的图像的结构相似性指数(SSIM)以及基于区域的体素级(RBV)PVC和深度部分容积校正(deepPVC)之间经部分容积校正的标准化摄取值的组内相关系数(ICC),作为验证和测试的指标。

结果

在验证和测试数据中观察到较高的SSIM(0.884±0.021)和ICC(0.921±0.042)(SSIM,0.876±0.028;ICC,0.894±0.051)。为一名参与者预测经部分容积校正的图像所需的计算时间(无图形处理单元时为48秒)比RBV PVC和MR分割过程所需的时间短得多。

结论

这些结果表明,deepPVC模型可直接从MR和PET图像预测经部分容积校正的图像,并通过跳过MR分割过程提高MR-PVC的通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5136/9339068/745ed44c0505/40658_2022_478_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验