Shah Jay, Che Yiming, Sohankar Javad, Luo Ji, Li Baoxin, Su Yi, Wu Teresa
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA.
ASU-Mayo Center for Innovative Imaging, Arizona State University, Tempe, AZ 85287, USA.
Life (Basel). 2024 Dec 1;14(12):1580. doi: 10.3390/life14121580.
Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer's disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial volume effects (PVE). In this study, we propose a novel approach to addressing PVE using a latent diffusion model for resolution recovery (LDM-RR) of PET imaging. We leverage a synthetic data generation pipeline to create high-resolution PET digital phantoms for model training. The proposed LDM-RR model incorporates a weighted combination of L, L, and MS-SSIM losses at both noise and image scales to enhance MRI-guided reconstruction. We evaluated the model's performance in improving statistical power for detecting longitudinal changes and enhancing agreement between amyloid PET measurements from different tracers. The results demonstrate that the LDM-RR approach significantly improves PET quantification accuracy, reduces inter-tracer variability, and enhances the detection of subtle changes in amyloid deposition over time. We show that deep learning has the potential to improve PET quantification in AD, effectively contributing to the early detection and monitoring of disease progression.
淀粉样蛋白正电子发射断层扫描(PET)成像在阿尔茨海默病(AD)的诊断和研究中起着至关重要的作用,能够对大脑中的淀粉样β斑块进行无创检测。然而,PET扫描的低空间分辨率由于部分容积效应(PVE)限制了淀粉样蛋白沉积的准确定量。在本研究中,我们提出了一种新方法,使用用于PET成像分辨率恢复的潜在扩散模型(LDM-RR)来解决PVE问题。我们利用一个合成数据生成管道来创建用于模型训练的高分辨率PET数字体模。所提出的LDM-RR模型在噪声和图像尺度上纳入了L、L和MS-SSIM损失的加权组合,以增强磁共振成像(MRI)引导的重建。我们评估了该模型在提高检测纵向变化的统计能力以及增强来自不同示踪剂的淀粉样蛋白PET测量之间的一致性方面的性能。结果表明,LDM-RR方法显著提高了PET定量准确性,降低了示踪剂间的变异性,并增强了对淀粉样蛋白沉积随时间细微变化的检测。我们表明,深度学习有潜力改善AD中的PET定量,有效地有助于疾病进展的早期检测和监测。