Suppr超能文献

基于图的运动想象非线性动态特征分析——迈向增强型混合脑机接口

A Graph-Based Nonlinear Dynamic Characterization of Motor Imagery Toward an Enhanced Hybrid BCI.

机构信息

Department of Electrical, Computer & Biomedical Engineering, University of Rhode Island (URI), Kingston, RI, 02881, USA.

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.

出版信息

Neuroinformatics. 2022 Oct;20(4):1169-1189. doi: 10.1007/s12021-022-09595-2. Epub 2022 Jul 30.

Abstract

Decoding neural responses from multimodal information sources, including electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), has the transformative potential to advance hybrid brain-computer interfaces (hBCIs). However, existing modest performance improvement of hBCIs might be attributed to the lack of computational frameworks that exploit complementary synergistic properties in multimodal features. This study proposes a multimodal data fusion framework to represent and decode synergistic multimodal motor imagery (MI) neural responses. We hypothesize that exploiting EEG nonlinear dynamics adds a new informative dimension to the commonly combined EEG-fNIRS features and will ultimately increase the synergy between EEG and fNIRS features toward an enhanced hBCI. The EEG nonlinear dynamics were quantified by extracting graph-based recurrence quantification analysis (RQA) features to complement the commonly used spectral features for an enhanced multimodal configuration when combined with fNIRS. The high-dimensional multimodal features were further given to a feature selection algorithm relying on the least absolute shrinkage and selection operator (LASSO) for fused feature selection. Linear support vector machine (SVM) was then used to evaluate the framework. The mean hybrid classification performance improved by up to 15% and 4% compared to the unimodal EEG and fNIRS, respectively. The proposed graph-based framework substantially increased the contribution of EEG features for hBCI classification from 28.16% up to 52.9% when introduced the nonlinear dynamics and improved the performance by approximately 2%. These findings suggest that graph-based nonlinear dynamics can increase the synergy between EEG and fNIRS features for an enhanced MI response representation that is not dominated by a single modality.

摘要

从多模态信息源(包括脑电图(EEG)和功能近红外光谱(fNIRS))中解码神经反应,具有推进混合脑机接口(hBCI)的变革潜力。然而,现有的 hBCI 性能的适度提高可能归因于缺乏利用多模态特征互补协同特性的计算框架。本研究提出了一种多模态数据融合框架,以表示和解码协同的多模态运动想象(MI)神经反应。我们假设利用 EEG 非线性动力学为常用的 EEG-fNIRS 特征增加了一个新的信息维度,并且最终将增加 EEG 和 fNIRS 特征之间的协同作用,以实现增强的 hBCI。通过提取基于图的递归定量分析(RQA)特征来量化 EEG 非线性动力学,以补充常用的光谱特征,当与 fNIRS 结合使用时,可增强多模态配置。然后,将高维多模态特征进一步提供给基于最小绝对收缩和选择算子(LASSO)的特征选择算法,以进行融合特征选择。然后,使用线性支持向量机(SVM)来评估该框架。与单模态 EEG 和 fNIRS 相比,混合分类性能平均提高了 15%和 4%。当引入非线性动力学时,基于图的框架大大增加了 EEG 特征对 hBCI 分类的贡献,从 28.16%增加到 52.9%,并且性能提高了约 2%。这些发现表明,基于图的非线性动力学可以增加 EEG 和 fNIRS 特征之间的协同作用,从而增强 MI 响应表示,而不是由单一模态主导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验