IEEE J Biomed Health Inform. 2024 Jun;28(6):3361-3370. doi: 10.1109/JBHI.2023.3294586. Epub 2024 Jun 6.
The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
本研究基于一种特征和通道选择策略,该策略使用相关滤波器来进行脑机接口(BCI)应用,使用脑电图(EEG)-近红外光谱(fNIRS)脑成像模式。所提出的方法融合了两种模式的互补信息来训练分类器。使用基于相关性的连接矩阵分别从 fNIRS 和 EEG 中提取与脑活动最密切相关的通道。此外,通过识别和融合两种模式的统计特征(即斜率、偏度、最大值、偏度、均值和峰度)来形成训练向量。构建的融合特征向量通过各种滤波器(包括 ReliefF、最小冗余最大相关性、卡方检验、方差分析和 Kruskal-Wallis 滤波器)进行过滤,以在训练前去除冗余信息。使用传统的分类器,如神经网络、支持向量机、线性判别分析和集成,用于训练和测试。使用带有运动想象信息的公共数据集来验证所提出方法的有效性。我们的研究结果表明,基于相关滤波器的通道和特征选择框架显著提高了混合 EEG-fNIRS 的分类准确性。基于 ReliefF 的滤波器与集成分类器的组合表现优于其他滤波器,准确率高达 94.77±4.26%。统计分析也验证了结果的显著性(p<0.01)。还提出了与先前研究结果的比较。我们的结果表明,所提出的方法可用于未来基于 EEG-fNIRS 的混合 BCI 应用。