Suppr超能文献

拉曼光谱和监督学习作为一种潜在的工具,以识别高剂量率近距离治疗诱导的前列腺癌生物化学特征。

Raman spectroscopy and supervised learning as a potential tool to identify high-dose-rate-brachytherapy induced biochemical profiles of prostate cancer.

机构信息

Department of Physics, University of British Columbia, Kelowna, Canada.

Trev and Joyce Deeley Research Centre, BC Cancer-Victoria, Victoria, Canada.

出版信息

J Biophotonics. 2022 Nov;15(11):e202200121. doi: 10.1002/jbio.202200121. Epub 2022 Aug 8.

Abstract

High-dose-rate-brachytherapy (HDR-BT) is an increasingly attractive alternative to external beam radiation-therapy for patients with intermediate risk prostate cancer. Despite this, no bio-marker based method currently exists to monitor treatment response, and the changes which take place at the biochemical level in hypo-fractionated HDR-BT remain poorly understood. The aim of this pilot study is to assess the capability of Raman spectroscopy (RS) combined with principal component analysis (PCA) and random-forest classification (RF) to identify radiation response profiles after a single dose of 13.5 Gy in a cohort of nine patients. We here demonstrate, as a proof-of-concept, how RS-PCA-RF could be utilised as an effective tool in radiation response monitoring, specifically assessing the importance of low variance PCs in complex sample sets. As RS provides information on the biochemical composition of tissue samples, this technique could provide insight into the changes which take place on the biochemical level, as result of HDR-BT treatment.

摘要

高剂量率近距离放射治疗(HDR-BT)是一种对中危前列腺癌患者极具吸引力的外照射放射治疗替代方法。尽管如此,目前还没有基于生物标志物的方法来监测治疗反应,并且在少分割 HDR-BT 中发生的生化水平变化仍知之甚少。本研究的目的是评估拉曼光谱(RS)结合主成分分析(PCA)和随机森林分类(RF)的能力,以识别 9 名患者单次接受 13.5Gy 剂量后的放射反应谱。我们在这里证明,作为概念验证,RS-PCA-RF 如何可作为放射反应监测的有效工具,特别是评估在复杂样本集中低方差 PCs 的重要性。由于 RS 提供了组织样本生化组成的信息,因此该技术可以深入了解 HDR-BT 治疗后生化水平发生的变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验