Suppr超能文献

使用拉曼光谱和半监督学习预测接受 HDR 近距离治疗的前列腺癌患者的疾病进展指标:一项初步研究。

Prediction of disease progression indicators in prostate cancer patients receiving HDR-brachytherapy using Raman spectroscopy and semi-supervised learning: a pilot study.

机构信息

Department of Physics, University of British Columbia, Kelowna, BC, Canada.

Department of Statistics, University of British Columbia, Kelowna, Canada.

出版信息

Sci Rep. 2022 Sep 6;12(1):15104. doi: 10.1038/s41598-022-19446-4.

Abstract

This work combines Raman spectroscopy (RS) with supervised learning methods-group and basis restricted non-negative matrix factorisation (GBR-NMF) and linear discriminant analysis (LDA)-to aid in the prediction of clinical indicators of disease progression in a cohort of 9 patients receiving high dose rate brachytherapy (HDR-BT) as the primary treatment for intermediate risk (D'Amico) prostate adenocarcinoma. The combination of Raman spectroscopy and GBR-NMF-sparseLDA modelling allowed for the prediction of the following clinical information; Gleason score, cancer of the prostate risk assessment (CAPRA) score of pre-treatment biopsies and a Ki67 score of < 3.5% or > 3.5% in post treatment biopsies. The three clinical indicators of disease progression investigated in this study were predicted using a single set of Raman spectral data acquired from each individual biopsy, obtained pre HDR-BT treatment. This work highlights the potential of RS, combined with supervised learning, as a tool for the prediction of multiple types of clinically relevant information to be acquired simultaneously using pre-treatment biopsies, therefore opening up the potential for avoiding the need for multiple immunohistochemistry (IHC) staining procedures (H&E, Ki67) and blood sample analysis (PSA) to aid in CAPRA scoring.

摘要

这项工作结合拉曼光谱(RS)和有监督学习方法-组和基限制非负矩阵分解(GBR-NMF)和线性判别分析(LDA),以帮助预测接受高剂量率近距离放射治疗(HDR-BT)作为主要治疗方法的 9 名患者队列中疾病进展的临床指标,这些患者患有中危(D'Amico)前列腺腺癌。拉曼光谱和 GBR-NMF-稀疏 LDA 建模的组合允许预测以下临床信息;Gleason 评分、前列腺癌风险评估(CAPRA)评分和治疗后活检中 Ki67 评分<3.5%或>3.5%。本研究中研究的三种疾病进展的临床指标是使用从每位患者接受 HDR-BT 治疗前的单次活检中获得的单一组拉曼光谱数据预测的。这项工作强调了 RS 与有监督学习相结合的潜力,作为一种工具,可以预测使用预处理活检同时获得的多种临床相关信息,从而有可能避免需要进行多次免疫组织化学(IHC)染色程序(H&E、Ki67)和血液样本分析(PSA)以辅助 CAPRA 评分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验