Suppr超能文献

通过糖尿病聚类检测肌肉减少症风险:一项日本前瞻性队列研究。

Detecting Sarcopenia Risk by Diabetes Clustering: A Japanese Prospective Cohort Study.

作者信息

Tanabe Hayato, Hirai Hiroyuki, Saito Haruka, Tanaka Kenichi, Masuzaki Hiroaki, Kazama Junichiro J, Shimabukuro Michio

机构信息

Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan.

Shirakawa Kosei General Hospital, Fukushima, Japan.

出版信息

J Clin Endocrinol Metab. 2022 Sep 28;107(10):2729-2736. doi: 10.1210/clinem/dgac430.

Abstract

CONTEXT

Previous studies have assessed the usefulness of data-driven clustering for predicting complications in patients with diabetes mellitus. However, whether the diabetes clustering is useful in predicting sarcopenia remains unclear.

OBJECTIVE

To evaluate the predictive power of diabetes clustering for the incidence of sarcopenia in a prospective Japanese cohort.

DESIGN

Three-year prospective cohort study.

SETTING AND PATIENTS

We recruited Japanese patients with type 1 or type 2 diabetes mellitus (n = 659) between January 2018 and February 2020 from the Fukushima Diabetes, Endocrinology, and Metabolism cohort.

INTERVENTIONS

Kaplan-Meier and Cox proportional hazards models were used to measure the predictive values of the conventional and clustering-based classification of diabetes mellitus for the onset of sarcopenia. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia (AWGS) 2019 consensus update.

MAIN OUTCOME MEASURES

Onset of sarcopenia.

RESULTS

Cluster analysis of a Japanese population revealed 5 diabetes clusters: cluster 1 [severe autoimmune diabetes (SAID)], cluster 2 [severe insulin-deficient diabetes (SIDD)], cluster 3 (severe insulin-resistant diabetes, cluster 4 (mild obesity-related diabetes), and cluster 5 (mild age-related diabetes). At baseline, 38 (6.5%) patients met the AWGS sarcopenia criteria, and 55 had newly developed sarcopenia within 3 years. The SAID and SIDD clusters were at high risk of developing sarcopenia after correction for known risk factors.

CONCLUSIONS

This study reveals that among the 5 diabetes clusters, the SAID and SIDD clusters are at a high risk for developing sarcopenia. Clustering-based stratification may be beneficial for predicting and preventing sarcopenia in patients with diabetes.

摘要

背景

既往研究评估了数据驱动聚类法在预测糖尿病患者并发症方面的实用性。然而,糖尿病聚类法在预测肌肉减少症方面是否有用尚不清楚。

目的

评估糖尿病聚类法对日本前瞻性队列中肌肉减少症发病率的预测能力。

设计

三年前瞻性队列研究。

地点和患者

我们于2018年1月至2020年2月从福岛糖尿病、内分泌和代谢队列中招募了1型或2型糖尿病日本患者(n = 659)。

干预措施

采用Kaplan-Meier法和Cox比例风险模型来衡量传统糖尿病分类法和基于聚类的糖尿病分类法对肌肉减少症发病的预测价值。根据亚洲肌肉减少症工作组(AWGS)2019年共识更新诊断肌肉减少症。

主要观察指标

肌肉减少症的发病情况。

结果

对日本人群的聚类分析揭示了5个糖尿病聚类:聚类1[重度自身免疫性糖尿病(SAID)]、聚类2[重度胰岛素缺乏性糖尿病(SIDD)]、聚类3(重度胰岛素抵抗性糖尿病)、聚类4(轻度肥胖相关性糖尿病)和聚类5(轻度年龄相关性糖尿病)。在基线时,38名(6.5%)患者符合AWGS肌肉减少症标准,55名患者在3年内新发生了肌肉减少症。在校正已知风险因素后,SAID和SIDD聚类发生肌肉减少症的风险较高。

结论

本研究表明,在5个糖尿病聚类中,SAID和SIDD聚类发生肌肉减少症的风险较高。基于聚类的分层可能有助于预测和预防糖尿病患者的肌肉减少症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验