Suppr超能文献

MRGAT:用于知识图补全的多关系图注意网络。

MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion.

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, 518060, China.

出版信息

Neural Netw. 2022 Oct;154:234-245. doi: 10.1016/j.neunet.2022.07.014. Epub 2022 Jul 16.

Abstract

One of the most effective ways to solve the problem of knowledge graph completion is embedding-based models. Graph neural networks (GNNs) are popular and promising embedding models which can exploit and use the structural information of neighbors in knowledge graphs. The current GNN-based knowledge graph completion methods assume that all neighbors of a node have equal importance. This assumption which cannot assign different weights to neighbors is pointed out in our study to be unreasonable. In addition, since the knowledge graph is a kind of heterogeneous graph with multiple relations, multiple complex interactions between nodes and neighbors can bring challenges to the effective message passing of GNNs. We then design a multi-relational graph attention network (MRGAT) which can adapt to different cases of heterogeneous multi-relational connections and then calculate the importance of different neighboring nodes through a self-attention layer. The incorporation of self-attention mechanism into the network with different node weights optimizes the network structure, and therefore, significantly results in a promotion of performance. We experimentally validate the rationality of our models on multiple benchmark knowledge graphs, where MRGAT achieves the best performance on various evaluation metrics including MRR score, Hits@ score compared with other state-of-the-art baseline models.

摘要

解决知识图补全问题最有效的方法之一是基于嵌入的模型。图神经网络(GNN)是一种流行且有前途的嵌入模型,它可以利用和使用知识图中邻居的结构信息。目前基于 GNN 的知识图补全方法假设节点的所有邻居都具有同等重要性。我们的研究指出,这种不能为邻居分配不同权重的假设是不合理的。此外,由于知识图是一种具有多种关系的异构图,节点和邻居之间的多种复杂交互给 GNN 的有效消息传递带来了挑战。然后,我们设计了一种多关系图注意网络(MRGAT),它可以适应异构多关系连接的不同情况,然后通过自注意层计算不同邻接节点的重要性。将自注意机制纳入具有不同节点权重的网络中,可以优化网络结构,从而显著提高性能。我们在多个基准知识图上验证了模型的合理性,其中 MRGAT 在各种评估指标(包括 MRR 得分、Hits@得分)上均优于其他最先进的基线模型,取得了最佳性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验