UMR 8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France.
W-MedPhys, 128 Rue la Boétie, 75008 Paris, France.
Molecules. 2024 Jun 7;29(12):2716. doi: 10.3390/molecules29122716.
The journey of drug discovery (DD) has evolved from ancient practices to modern technology-driven approaches, with Artificial Intelligence (AI) emerging as a pivotal force in streamlining and accelerating the process. Despite the vital importance of DD, it faces challenges such as high costs and lengthy timelines. This review examines the historical progression and current market of DD alongside the development and integration of AI technologies. We analyse the challenges encountered in applying AI to DD, focusing on drug design and protein-protein interactions. The discussion is enriched by presenting models that put forward the application of AI in DD. Three case studies are highlighted to demonstrate the successful application of AI in DD, including the discovery of a novel class of antibiotics and a small-molecule inhibitor that has progressed to phase II clinical trials. These cases underscore the potential of AI to identify new drug candidates and optimise the development process. The convergence of DD and AI embodies a transformative shift in the field, offering a path to overcome traditional obstacles. By leveraging AI, the future of DD promises enhanced efficiency and novel breakthroughs, heralding a new era of medical innovation even though there is still a long way to go.
药物发现(DD)的历程从古代实践发展到现代技术驱动的方法,人工智能(AI)成为简化和加速这一过程的关键力量。尽管 DD 至关重要,但它面临着高成本和漫长时间线等挑战。本综述考察了 DD 的历史发展和当前市场,以及 AI 技术的发展和整合。我们分析了将 AI 应用于 DD 时遇到的挑战,重点关注药物设计和蛋白质-蛋白质相互作用。通过提出 AI 在 DD 中的应用模型,使讨论更加丰富。通过三个案例研究强调了 AI 在 DD 中的成功应用,包括新型抗生素类药物和已进入 II 期临床试验的小分子抑制剂的发现。这些案例强调了 AI 识别新的候选药物和优化开发过程的潜力。DD 和 AI 的融合体现了该领域的变革性转变,为克服传统障碍提供了一条途径。通过利用 AI,DD 的未来有望提高效率并取得新的突破,预示着医学创新的新时代,尽管还有很长的路要走。