Fu Fangbao, Yang Dongjie, Fan Yukang, Qiu Xueqing, Huang Jinhao, Li Zhixian, Zhang Wenli
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China.
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China.
J Colloid Interface Sci. 2022 Dec 15;628(Pt A):90-99. doi: 10.1016/j.jcis.2022.07.070. Epub 2022 Jul 16.
Nitrogen-doped porous carbons have emerged as promising electrode materials for supercapacitors. However, the precise control of carbon geometry and the effective doping method remain challenging. Herein, a confined self-assembly template and in-situ mild activation strategy is proposed to prepare cubic lignin composite precursor, followed by co-pyrolysis with melamine at a high temperature for nitrogen-doped hierarchical porous carbons (N-HPLCs). The zinc oxalate template has the coupling effect of confinement and mild activation during carbonization, which not only prevents the restacking of the carbon matrix but also generates zinc cyanamide intermediate to avoid excessive loss of nitrogen species. The optimized N-HPLCs exhibit an accordion-like framework with interconnected porous sheets, ultrahigh edge-nitrogen doping level (up to 12.20 at.%), and a total nitrogen doping level of 14.09 at.%. Consequently, it shows a high gravimetric capacitance of 354 F/g at 0.2 A/g, an extraordinary surface-area-normalized capacitance of 82.1 ± 0.2 μF/cm, and good rate capability in supercapacitor applications. Moreover, the fabricated coin-type symmetric supercapacitor displays a high energy density of 12.9 Wh/kg at 161.9 W/kg and superior cycling stability with a 99.5% capacitance retention after 16,000 cycles at 2.0 A/g. This work offers a novel method for preparing nitrogen-enriched lignin-derived carbon for high-performance supercapacitors.
氮掺杂多孔碳已成为超级电容器中很有前景的电极材料。然而,精确控制碳的几何结构和有效的掺杂方法仍然具有挑战性。在此,我们提出一种受限自组装模板和原位温和活化策略来制备立方木质素复合前驱体,随后与三聚氰胺在高温下共热解以制备氮掺杂分级多孔碳(N-HPLCs)。草酸锌模板在碳化过程中具有限制和温和活化的耦合作用,这不仅防止了碳基体的重新堆叠,还生成了氰胺锌中间体以避免氮物种的过度损失。优化后的N-HPLCs呈现出具有相互连接的多孔片的手风琴状框架、超高的边缘氮掺杂水平(高达12.20原子%)和14.09原子%的总氮掺杂水平。因此,在超级电容器应用中,它在0.2 A/g时表现出354 F/g的高比电容、82.1±0.2 μF/cm的非凡表面积归一化电容以及良好的倍率性能。此外,所制备的硬币型对称超级电容器在161.9 W/kg时显示出12.9 Wh/kg的高能量密度,并且在2.0 A/g下经过16000次循环后具有99.5%的电容保持率,展现出优异的循环稳定性。这项工作为制备用于高性能超级电容器的富氮木质素衍生碳提供了一种新方法。