Li Wei, Wang Guanhua, Sui Wenjie, Xu Ying, Parvez Ashak Mahmud, Si Chuanling
Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Shengquan New Materials Co., Ltd., Jinan 250204, China.
Int J Biol Macromol. 2023 Apr 15;234:123603. doi: 10.1016/j.ijbiomac.2023.123603. Epub 2023 Feb 10.
The conversion of renewable lignin with low-cost and high carbon content properties into porous carbon materials for supercapacitor applications has caught considerable interest. Herein, two dimensional lignin-derived carbon nanosheets (N-LHPC) with hierarchically porous structures were facilely synthesized via a novel metal-lignin assembly strategy and their performances for supercapacitor applications were investigated. During the carbonization process, the uniformly distributed Zn facilitates the coordinating development of micropores structure and the generated MgO embedded in the carbon matrix acts as a template to produce mesoporous structure after acid washing. Moreover, the melamine addition promotes the development of mesopores by formation of lamellae structure and realizes the N doping in the carbon materials. Therefore, the obtained N-LHPC presents an excellent specific capacitance of 235.75 F/g at 0.5 A/g owing to its hierarchical pore structure as well as the N/O functional groups. Moreover, at the power density of 450 W/kg, the N-LHPC achieves a maximum energy density of 14.75 Wh/kg, showing great application potential in energy storage. The metal-lignin assembly strategy followed by N-doping proposed in this paper provides N-LHPC materials with hierarchical nanostructure, good electron/ion transfer properties, and abundant pseudocapacitive active species, which improve the capacitance performances of the N-LHPC.
将具有低成本和高碳含量特性的可再生木质素转化为用于超级电容器的多孔碳材料引起了广泛关注。在此,通过一种新型的金属-木质素组装策略轻松合成了具有分级多孔结构的二维木质素衍生碳纳米片(N-LHPC),并研究了它们在超级电容器应用中的性能。在碳化过程中,均匀分布的锌促进了微孔结构的协同发展,嵌入碳基质中的生成的氧化镁在酸洗后作为模板产生中孔结构。此外,三聚氰胺的添加通过形成层状结构促进了中孔的发展,并实现了碳材料中的氮掺杂。因此,由于其分级孔结构以及氮/氧官能团,所获得的N-LHPC在0.5 A/g时呈现出235.75 F/g的优异比电容。此外,在450 W/kg的功率密度下,N-LHPC实现了14.75 Wh/kg的最大能量密度,在储能方面显示出巨大的应用潜力。本文提出的金属-木质素组装策略继之以氮掺杂,为N-LHPC材料提供了分级纳米结构、良好的电子/离子转移性能以及丰富的赝电容活性物种,从而提高了N-LHPC的电容性能。