Sisila Valappil, Indhu Mohan, Radhakrishnan Janani, Ayyadurai Niraikulam
Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
Trends Biotechnol. 2023 Feb;41(2):165-183. doi: 10.1016/j.tibtech.2022.07.003. Epub 2022 Jul 29.
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
遗传密码扩展(GCE)能够将非编码氨基酸(NCAA)和非天然氨基酸(UNAA)定向掺入活性核心,赋予工程蛋白特定的结构和功能。许多蛋白质生物材料是串联重复序列,其本身包含通过翻译后修饰(PTM)产生的NCAA以执行指定功能。使用原核系统的传统基因工程方法在生物合成具有NCAA/UNAA的功能活性生物材料方面能力有限。密码子抑制和重新分配可全局引入NCAA/UNAA,使工程蛋白能够重新设计以模拟天然基质-细胞相互作用用于组织工程。扩展遗传密码能够利用儿茶酚(调节细胞-基质相互作用的生长因子模拟物)对生物材料进行工程改造,从而促进基因和蛋白质的组织特异性表达。这种蛋白质工程方法在实现组织知情、组织顺应性的可调生物材料方面显示出前景。