Suppr超能文献

基于贝叶斯网络的河海漂浮垃圾收集装置位置确定

In-Stream Marine Litter Collection Device Location Determination Using Bayesian Network.

作者信息

Battawi Abdullah, Mallon Ellie, Vedral Anthony, Sparks Eric, Ma Junfeng, Marufuzzaman Mohammad

机构信息

Industrial and System Engineering Department, Mississippi State University, Starkville, MS 39762, USA;

Osprey Initiative, LLC, Mobile, AL 36606, USA;

出版信息

Sustainability. 2022 May 18;14(10):6147. doi: 10.3390/su14106147. eCollection 2022 May.

Abstract

Increased generation of waste, production of plastics, and poor environmental stewardship has led to an increase in floating litter. Significant efforts have been dedicated to mitigating this globally relevant issue. Depending on the location of floating litter, removal methods would vary, but usually include manual cleanups by volunteers or workers, use of heavy machinery to rake or sweep litter off beaches or roads, or passive litter collection traps. In the open ocean or streams, a common passive technique is to use booms and a collection receptacle to trap floating litter. These passive traps are usually installed to intercept floating litter; however, identifying the appropriate locations for installing these collection devices is still not fully investigated. We utilized four common criteria and fifteen sub-criteria to determine the most appropriate setup location for an in-stream collection device (Litter Gitter-Osprey Initiative, LLC, Mobile, AL, USA). Bayesian Network technology was applied to analyze these criteria comprehensively. A case study composed of multiple sites across the U.S. Gulf of Mexico Coast was used to validate the proposed approach, and propagation and sensitivity analyses were used to evaluate performance. The results show that the fifteen summarized criteria combined with the Bayesian Network approach could aid location selection and have practical potential for in-stream litter collection devices in coastal areas.

摘要

垃圾产生量的增加、塑料的生产以及环境管理不善导致了漂浮垃圾的增多。人们已经付出了巨大努力来缓解这个具有全球相关性的问题。根据漂浮垃圾的位置,清除方法会有所不同,但通常包括志愿者或工人的人工清理、使用重型机械将垃圾从海滩或道路上耙起或清扫,或者使用被动式垃圾收集陷阱。在公海或溪流中,一种常见的被动技术是使用围油栏和收集容器来捕获漂浮垃圾。这些被动陷阱通常是为拦截漂浮垃圾而设置的;然而,确定这些收集装置的合适安装位置仍未得到充分研究。我们利用四个常见标准和十五个子标准来确定溪流收集装置(美国阿拉巴马州莫比尔市的Litter Gitter - Osprey Initiative有限责任公司)的最合适设置位置。应用贝叶斯网络技术对这些标准进行全面分析。通过一个由美国墨西哥湾沿岸多个地点组成的案例研究来验证所提出的方法,并使用传播和敏感性分析来评估性能。结果表明,十五个总结标准与贝叶斯网络方法相结合有助于选址,并且对沿海地区的溪流垃圾收集装置具有实际应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382b/9171904/afe4e4d18cd0/sustainability-14-06147-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验