Suppr超能文献

眼动追踪能告诉我们放射科医生如何使用自动乳腺超声。

What eye tracking can tell us about how radiologists use automated breast ultrasound.

作者信息

Wolfe Jeremy M, Lyu Wanyi, Dong Jeffrey, Wu Chia-Chien

机构信息

Brigham and Women's Hospital, Boston, Massachusetts, United States.

Harvard Medical School, Boston, Massachusetts, United States.

出版信息

J Med Imaging (Bellingham). 2022 Jul;9(4):045502. doi: 10.1117/1.JMI.9.4.045502. Epub 2022 Jul 26.

Abstract

: Automated breast ultrasound (ABUS) presents three-dimensional (3D) representations of the breast in the form of stacks of coronal and transverse plane images. ABUS is especially useful for the assessment of dense breasts. Here, we present the first eye tracking data showing how radiologists search and evaluate ABUS cases. : Twelve readers evaluated single-breast cases in 20-min sessions. Positive findings were present in 56% of the evaluated cases. Eye position and the currently visible coronal and transverse slice were tracked, allowing for reconstruction of 3D "scanpaths." : Individual readers had consistent search strategies. Most readers had strategies that involved examination of all available images. Overall accuracy was 0.74 (sensitivity = 0.66 and specificity = 0.84). The 20 false negative errors across all readers can be classified using Kundel's (1978) taxonomy: 17 are "decision" errors (readers found the target but misclassified it as normal or benign). There was one recognition error and two "search" errors. This is an unusually high proportion of decision errors. Readers spent essentially the same proportion of time viewing coronal and transverse images, regardless of whether the case was positive or negative, correct or incorrect. Readers tended to use a "scanner" strategy when viewing coronal images and a "driller" strategy when viewing transverse images. These results suggest that ABUS errors are more likely to be errors of interpretation than of search. Further research could determine if readers' exploration of all images is useful or if, in some negative cases, search of transverse images is redundant following a search of coronal images.

摘要

自动乳腺超声(ABUS)以冠状面和横断面图像堆栈的形式呈现乳腺的三维(3D)图像。ABUS对致密型乳腺的评估特别有用。在此,我们展示了首批眼动追踪数据,以显示放射科医生如何搜索和评估ABUS病例。12名读者在20分钟的时间段内评估单乳病例。在56%的评估病例中发现了阳性结果。追踪眼位以及当前可见的冠状面和横断面切片,从而能够重建三维“扫描路径”。个体读者具有一致的搜索策略。大多数读者的策略包括检查所有可用图像。总体准确率为0.74(敏感性 = 0.66,特异性 = 0.84)。所有读者的20例假阴性错误可根据昆德尔(1978年)分类法进行分类:17例为“决策”错误(读者发现了目标但将其错误分类为正常或良性)。有1例识别错误和2例“搜索”错误。这是决策错误的比例异常高。无论病例是阳性还是阴性、正确还是错误,读者查看冠状面和横断面图像所花费的时间比例基本相同。读者在查看冠状面图像时倾向于使用“扫描器”策略,在查看横断面图像时倾向于使用“钻孔器”策略。这些结果表明,ABUS错误更可能是解释错误而非搜索错误。进一步的研究可以确定读者对所有图像的探索是否有用,或者在某些阴性病例中,在搜索冠状面图像之后搜索横断面图像是否多余。

相似文献

6
8
Analysis of false-negative readings of automated breast ultrasound studies.自动乳腺超声检查假阴性读数分析。
J Clin Ultrasound. 2017 Jun;45(5):245-251. doi: 10.1002/jcu.22474. Epub 2017 Mar 13.

本文引用的文献

1
What do experts look at and what do experts find when reading mammograms?专家在阅读乳房X光片时会看什么,又能发现什么?
J Med Imaging (Bellingham). 2021 Jul;8(4):045501. doi: 10.1117/1.JMI.8.4.045501. Epub 2021 Jul 13.
2
Automated Breast Ultrasound Screening for Dense Breasts.自动乳腺超声筛查致密乳腺。
Korean J Radiol. 2020 Jan;21(1):15-24. doi: 10.3348/kjr.2019.0176.
3
Visual search in breast imaging.乳腺影像学中的视觉搜索。
Br J Radiol. 2019 Oct;92(1102):20190057. doi: 10.1259/bjr.20190057. Epub 2019 Jul 18.
4
Digital Breast Tomosynthesis: Concepts and Clinical Practice.数字乳腺断层合成:概念与临床实践。
Radiology. 2019 Jul;292(1):1-14. doi: 10.1148/radiol.2019180760. Epub 2019 May 14.
7
Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review.用于乳腺癌检测与管理的超声成像技术:综述
Ultrasound Med Biol. 2018 Jan;44(1):37-70. doi: 10.1016/j.ultrasmedbio.2017.09.012. Epub 2017 Oct 26.
10
A 'snapshot' of the visual search behaviours of medical sonographers.医学超声检查技师视觉搜索行为的“快照”
Australas J Ultrasound Med. 2015 May;18(2):70-77. doi: 10.1002/j.2205-0140.2015.tb00045.x. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验