School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Mater Horiz. 2022 Oct 3;9(10):2592-2602. doi: 10.1039/d2mh00607c.
The intrinsic resilience of biofilms to environmental conditions makes them an attractive platform for biocatalysis, bioremediation, agriculture or consumer health. However, one of the main challenges in these areas is that beneficial bacteria are not necessarily good at biofilm formation. Currently, this problem is solved by genetic engineering or experimental evolution, techniques that can be costly and time consuming, require expertise in molecular biology and/or microbiology and, more importantly, are not suitable for all types of microorganisms or applications. Here we show that synthetic polymers can be used as an alternative, working as simple additives to nucleate the formation of biofilms. Using a combination of controlled radical polymerization and dynamic covalent chemistry, we prepare a set of synthetic polymers carrying mildly cationic, aromatic, heteroaromatic or aliphatic moieties. We then demonstrate that hydrophobic polymers induce clustering and promote biofilm formation in MC4100, a strain of that forms biofilms poorly, with aromatic and heteroaromatic moieties leading to the best performing polymers. Moreover, we compare the effect of the polymers on MC4100 against PHL644, an strain that forms biofilms well due to a single point mutation which increases expression of the adhesin curli. In the presence of selected polymers, MC4100 can reach levels of biomass production and curli expression similar or higher than PHL644, demonstrating that synthetic polymers promote similar changes in microbial physiology than those introduced following genetic modification. Finally, we demonstrate that these polymers can be used to improve the performance of MC4100 biofilms in the biocatalytic transformation of 5-fluoroindole into 5-fluorotryptophan. Our results show that incubation with these synthetic polymers helps MC4100 match and even outperform PHL644 in this biotransformation, demonstrating that synthetic polymers can underpin the development of beneficial applications of biofilms.
生物膜对环境条件的固有弹性使它们成为生物催化、生物修复、农业或消费者健康的有吸引力的平台。然而,这些领域的主要挑战之一是,有益细菌不一定擅长生物膜的形成。目前,这个问题是通过遗传工程或实验进化来解决的,这些技术既昂贵又耗时,需要分子生物学和/或微生物学方面的专业知识,更重要的是,并不适用于所有类型的微生物或应用。在这里,我们表明,合成聚合物可以作为一种替代物,用作形成生物膜的成核的简单添加剂。我们使用可控自由基聚合和动态共价化学的组合,制备了一组带有温和阳离子、芳香族、杂芳族或脂肪族部分的合成聚合物。然后,我们证明疏水性聚合物会诱导团聚并促进生物膜在 MC4100 中的形成,MC4100 是一种生物膜形成能力较差的 菌株,带有芳香族和杂芳族部分的聚合物表现最佳。此外,我们比较了聚合物对生物膜形成能力较差的 MC4100 的影响与 PHL644 的影响,PHL644 是一种由于单个点突变导致表达黏附素 curli 增加而生物膜形成良好的 菌株。在选择的聚合物存在下,MC4100 可以达到类似于或高于 PHL644 的生物量产生和 curli 表达水平,证明合成聚合物可以促进微生物生理学的类似变化,这些变化类似于遗传修饰引入的变化。最后,我们证明这些聚合物可以用于改善 MC4100 生物膜在 5-氟吲哚转化为 5-氟色氨酸的生物催化转化中的性能。我们的结果表明,与这些合成聚合物孵育有助于 MC4100 在这种生物转化中与 PHL644 相匹配,甚至表现更好,证明合成聚合物可以支持生物膜有益应用的发展。