Suppr超能文献

利用合成遗传回路的细胞生物催化剂可实现延长和持久的酶活性。

Cellular Biocatalysts Using Synthetic Genetic Circuits for Prolonged and Durable Enzymatic Activity.

机构信息

UNAM-Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center Bilkent University, 06800, Ankara, Turkey.

出版信息

Chembiochem. 2019 Jul 15;20(14):1799-1809. doi: 10.1002/cbic.201800767. Epub 2019 May 15.

Abstract

Cellular biocatalysts hold great promise for the synthesis of difficult to achieve compounds, such as complex active molecules. Whole-cell biocatalysts can be programmed through genetic circuits to be more efficient, but they suffer from low stability. The catalytic activity of whole cells decays under stressful conditions, such as prolonged incubation times or high temperatures. In nature, microbial communities cope with these conditions by forming biofilm structures. In this study, it is shown that the use of biofilm structures can enhance the stability of whole-cell biocatalysts. We employed two different strategies to increase the stability of whole-cell catalysts and decrease their susceptibility to high temperature. In the first approach, the formation of a biofilm structure is induced by controlling the expression of one of the curli component, CsgA. The alkaline phosphatase (ALP) enzyme was used to monitor the catalytic activity of cells in the biofilm structure. In the second approach, the ALP enzyme was fused to the CsgA curli fiber subunit to utilize the protective properties of the biofilm on enzyme biofilms. Furthermore, an AND logic gate is introduced between the expression of CsgA and ALP by toehold RNA switches and recombinases to enable logical programming of the whole-cell catalyst for biofilm formation and catalytic action with different tools. The study presents viable approaches to engineer a platform for biocatalysis processes.

摘要

细胞生物催化剂在合成难以实现的化合物方面具有巨大的潜力,例如复杂的活性分子。全细胞生物催化剂可以通过遗传电路进行编程,以提高效率,但它们的稳定性较差。在压力条件下,例如长时间孵育或高温下,全细胞的催化活性会下降。在自然界中,微生物群落通过形成生物膜结构来应对这些条件。在这项研究中,表明使用生物膜结构可以提高全细胞生物催化剂的稳定性。我们采用了两种不同的策略来提高全细胞催化剂的稳定性并降低其对高温的敏感性。在第一种方法中,通过控制卷曲蛋白成分之一 CsgA 的表达来诱导生物膜结构的形成。碱性磷酸酶(ALP)酶被用来监测生物膜结构中细胞的催化活性。在第二种方法中,将 ALP 酶融合到 CsgA 卷曲纤维亚基上,以利用生物膜对酶生物膜的保护特性。此外,通过 toehold RNA 开关和重组酶在 CsgA 和 ALP 的表达之间引入与门逻辑门,以便使用不同的工具对全细胞催化剂进行生物膜形成和催化作用的逻辑编程。该研究提出了可行的方法来设计生物催化过程的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验