Wei Sichen, Fu Yu, Roy Pinku, Tong Xiao, Yue Hongyan, Liu Maomao, Jaiswal Hemendra Nath, Shahi Simran, Gata Yannick Iniatius, Butler Tony, Li Huamin, Jia Quanxi, Yao Fei
Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35673-35681. doi: 10.1021/acsami.2c07984. Epub 2022 Aug 1.
As an inexpensive and naturally abundant two-dimensional (2D) material, molybdenum disulfide (MoS) exhibits a high Li-ion storage capacity along with a low volume expansion upon lithiation, rendering it an alternative anode material for lithium-ion batteries (LIBs). However, the challenge of using MoS-based anodes is their intrinsically low electrical conductivity and unsatisfied cycle stability. To address the above issues, we have exploited a wet chemical technique and integrated MoS with highly conductive titanium carbide (TiC) MXene to form a 2D nanohybrid. The binary hybrids were then subjected to an -butyllithium (-Buli) treatment to induce both MoS deep phase transition and MXene surface functionality modulation simultaneously. We observed a substantial increase in 1T-phase MoS content and a clear suppression of -F-containing functional groups in MXene due to the prelithiation process enabled by the -Buli treatment. Such an approach not only increases the overall network conductivity but also improves Li-ion diffusion kinetics. As a result, the MoS/TiC composite with -Buli treatment delivered a high Li-ion storage capacity (540 mA h g at 100 mA g), outstanding cycle stability (up to 300 cycles), and excellent rate capability. This work provides an effective strategy for the structure-property engineering of 2D materials and sheds light on the rational design of high-performance LIBs using 2D-based anode materials.
作为一种廉价且天然丰富的二维(2D)材料,二硫化钼(MoS₂)具有高锂离子存储容量以及锂化时低体积膨胀的特性,使其成为锂离子电池(LIBs)的替代负极材料。然而,使用基于MoS₂的负极面临的挑战是其固有低电导率和不理想的循环稳定性。为了解决上述问题,我们采用了湿化学技术,将MoS₂与高导电性的碳化钛(TiC)MXene集成,形成二维纳米杂化物。然后对二元杂化物进行丁基锂(n-BuLi)处理,以同时诱导MoS₂深度相变和MXene表面功能调制。我们观察到,由于n-BuLi处理实现的预锂化过程,1T相MoS₂含量大幅增加,MXene中含氟官能团明显受到抑制。这种方法不仅提高了整体网络电导率,还改善了锂离子扩散动力学。结果,经过n-BuLi处理的MoS₂/TiC复合材料具有高锂离子存储容量(在100 mA g⁻¹时为540 mA h g⁻¹)、出色的循环稳定性(高达300次循环)和优异的倍率性能。这项工作为二维材料的结构-性能工程提供了一种有效策略,并为使用基于二维的负极材料合理设计高性能LIBs提供了启示。