Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave, Vilnius, Lithuania.
Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka, Lublin, Poland.
Ann Bot. 2022 Sep 26;130(4):457-475. doi: 10.1093/aob/mcac098.
In this review, we summarize data concerning action potentials (APs) - long-distance electrical signals in Characean algae and liverworts. These lineages are key in understanding the mechanisms of plant terrestrialization. Liverworts are postulated to be pioneer land plants, whereas aquatic charophytes are considered the closest relatives to land plants. The drastic change of the habitat was coupled with the adaptation of signalling systems to the new environment.
APs fulfil the 'all-or-nothing' law, exhibit refractory periods and propagate with a uniform velocity. Their ion mechanism in the algae and liverworts consists of a Ca2+ influx (from external and internal stores) followed by/coincident with a Cl- efflux, which both evoke the membrane potential depolarization, and a K+ efflux leading to repolarization. The molecular identity of ion channels responsible for these fluxes remains unknown. Publication of the Chara braunii and Marchantia polymorpha genomes opened up new possibilities for studying the molecular basis of APs. Here we present the list of genes which can participate in AP electrogenesis. We also point out the differences between these plant species, e.g. the absence of Ca2+-permeable glutamate receptors (GLRs) and Cl--permeable SLAC1 channel homologues in the Chara genome. Both these channels play a vital role in long-distance signalling in liverworts and vascular plants. Among the common properties of APs in liverworts and higher plants is their duration (dozens of seconds) and the speed of propagation (mm s-1), which are much slower than in the algae (seconds, and dozens of mm s-1, respectively).
Future studies with combined application of electrophysiological and molecular techniques should unravel the ion channel proteins responsible for AP generation, their regulation and transduction of those signals to physiological responses. This should also help to understand the adaptation of the signalling systems to the land environment and further evolution of APs in vascular plants.
在这篇综述中,我们总结了关于动作电位(APs)的资料——这是轮藻属藻类和苔藓植物中的长距离电信号。这些谱系对于理解植物陆地化的机制至关重要。苔藓植物被认为是先锋陆地植物,而水生轮藻则被认为是与陆地植物最接近的近亲。生境的剧烈变化伴随着信号系统适应新环境的变化。
APs 满足“全有或全无”定律,表现出不应期并以均匀速度传播。藻类和苔藓植物中的 AP 离子机制包括 Ca2+内流(来自外部和内部储存库),随后/同时伴随着 Cl-外流,这两者都会引起膜电位去极化,以及 K+外流导致复极化。负责这些流动的离子通道的分子身份仍然未知。Chara braunii 和 Marchantia polymorpha 基因组的公布为研究 AP 的分子基础开辟了新的可能性。在这里,我们列出了可能参与 AP 电发生的基因列表。我们还指出了这些植物物种之间的差异,例如 Chara 基因组中不存在 Ca2+通透性谷氨酸受体(GLRs)和 Cl--通透性 SLAC1 通道同源物。这两种通道在苔藓植物和维管植物的长距离信号传导中都起着至关重要的作用。苔藓植物和高等植物的 AP 具有共同的特性,即其持续时间(数十秒)和传播速度(mm s-1),都比藻类慢得多(分别为秒和数十毫米 s-1)。
未来的研究结合应用电生理学和分子技术,应该能够揭示负责 AP 产生的离子通道蛋白,以及它们的调节和将这些信号转导为生理反应的机制。这也应该有助于理解信号系统对陆地环境的适应以及维管植物中 AP 的进一步进化。