C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States.
Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States.
Anal Chem. 2022 Aug 16;94(32):11329-11336. doi: 10.1021/acs.analchem.2c02074. Epub 2022 Aug 1.
Coupling capillary electrophoresis (CE) to mass spectrometry (MS) is a powerful strategy to leverage a high separation efficiency with structural identification. Traditional CE-MS interfacing relies upon voltage to drive this process. Additionally, sheathless interfacing requires that the electrophoresis generates a sufficient volumetric flow to sustain the ionization process. Vibrating sharp-edge spray ionization (VSSI) is a new method to interface capillary electrophoresis to mass analyzers. In contrast to traditional interfacing, VSSI is voltage-free, making it straightforward for CE and MS. New nanoflow sheath CE-VSSI-MS is introduced in this work to reduce the reliance on the separation flow rate to facilitate the transfer of analyte to the MS. The nanoflow sheath VSSI spray ionization functions from 400 to 900 nL/min. Using the new nanoflow sheath reported here, volumetric flow rate through the separation capillary is less critical, allowing the use of a small (i.e., 20 to 25 μm) inner diameter separation capillary and enabling the use of higher separation voltages and faster analysis. Moreover, the use of a nanoflow sheath enables greater flexibility in the separation conditions. The nanoflow sheath is operated using aqueous solutions in the background electrolyte and in the sheath, demonstrating the separation can be performed under normal and reversed polarity in the presence or absence of electroosmotic flow. This includes the use of a wider pH range as well. The versatility of nanoflow sheath CE-VSSI-MS is demonstrated by separating cationic, anionic, and zwitterionic molecules under a variety of separation conditions. The detection sensitivity observed with nanoflow sheath CE-VSSI-MS is comparable to that obtained with sheathless CE-VSSI-MS as well as CE-MS separations with electrospray ionization interfacing. A bare fused silica capillary is used to separate cationic β-blockers with a near-neutral background electrolyte at concentrations ranging from 1.0 nM to 1.0 μM. Under acidic conditions, 13 amino acids are separated with normal polarity at a concentration ranging from 0.25 to 5 μM. Finally, separations of anionic compounds are demonstrated using reversed polarity under conditions of suppressed electroosmotic flow through the use of a semipermanent surface coating. With a near-neutral separation electrolyte, anionic nonsteroidal anti-inflammatory drugs are detected over a concentration range of 0.1 to 5.0 μM.
将毛细管电泳 (CE) 与质谱 (MS) 相结合是一种利用高分离效率进行结构鉴定的强大策略。传统的 CE-MS 接口依赖于电压来驱动这个过程。此外,无鞘接口要求电泳产生足够的体积流量来维持电离过程。振动锐边喷雾电离 (VSSI) 是一种将毛细管电泳与质谱仪接口的新方法。与传统接口相比,VSSI 是无电压的,因此 CE 和 MS 很简单。本工作中引入了新的纳流鞘 CE-VSSI-MS,以减少对分离流速的依赖,从而便于将分析物转移至 MS。纳流鞘 VSSI 喷雾电离的功能范围为 400 至 900nL/min。使用本文报道的新型纳流鞘,通过分离毛细管的体积流量就不那么关键了,这允许使用小内径(即 20 至 25μm)的分离毛细管,并能够使用更高的分离电压和更快的分析速度。此外,使用纳流鞘可以使分离条件更加灵活。纳流鞘使用背景电解质和鞘中的水溶液操作,证明在存在或不存在电渗流的情况下,可以在正常和反极性下进行分离。这也包括使用更宽的 pH 范围。纳流鞘 CE-VSSI-MS 的多功能性通过在各种分离条件下分离阳离子、阴离子和两性离子分子来证明。使用纳流鞘 CE-VSSI-MS 观察到的检测灵敏度与无鞘 CE-VSSI-MS 以及与电喷雾接口的 CE-MS 分离相当。使用裸熔融石英毛细管,在浓度范围为 1.0nM 至 1.0μM 的近中性背景电解质下分离阳离子β受体阻滞剂。在酸性条件下,在浓度范围为 0.25 至 5μM 时,分离 13 种氨基酸。最后,在使用半永久表面涂层抑制电渗流的情况下,在反极性条件下证明了阴离子化合物的分离。在近中性分离电解质的情况下,检测到浓度范围为 0.1 至 5.0μM 的阴离子非甾体抗炎药。