Venkataramani Varun, Yang Yvonne, Schubert Marc Cicero, Reyhan Ekin, Tetzlaff Svenja Kristin, Wißmann Niklas, Botz Michael, Soyka Stella Judith, Beretta Carlo Antonio, Pramatarov Rangel Lyubomirov, Fankhauser Laura, Garofano Luciano, Freudenberg Alexander, Wagner Julia, Tanev Dimitar Ivanov, Ratliff Miriam, Xie Ruifan, Kessler Tobias, Hoffmann Dirk C, Hai Ling, Dörflinger Yvette, Hoppe Simone, Yabo Yahaya A, Golebiewska Anna, Niclou Simone P, Sahm Felix, Lasorella Anna, Slowik Martin, Döring Leif, Iavarone Antonio, Wick Wolfgang, Kuner Thomas, Winkler Frank
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Cell. 2022 Aug 4;185(16):2899-2917.e31. doi: 10.1016/j.cell.2022.06.054. Epub 2022 Jul 31.
Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.
胶质母细胞瘤是浸润大脑的不治之症肿瘤。胶质母细胞瘤细胞的一个亚群形成了一个由肿瘤微管(TMs)相互连接的功能性且对治疗有抗性的肿瘤细胞网络。其他亚群似乎没有连接,它们的生物学作用仍不清楚。在这里,我们证明全脑定植是由胶质母细胞瘤细胞推动的,这些细胞与其他肿瘤细胞和星形胶质细胞没有连接,但却接受来自神经元的突触输入。在小鼠模型和人类疾病中,这个亚群对应于单细胞转录组学所定义的神经元样和神经祖细胞样肿瘤细胞状态。肿瘤细胞侵袭类似于神经元迁移机制,并采用类似莱维行走的运动模式来探测环境。神经元活动在胶质母细胞瘤细胞中诱导复杂的钙信号,随后TMs从头形成并提高侵袭速度。综合来看,叠加分子和功能单细胞数据表明,神经元机制在多个层面上控制着胶质母细胞瘤细胞的侵袭。这解释了胶质母细胞瘤的扩散和细胞异质性是如何紧密相连的。