Suppr超能文献

在肿瘤进展过程中,单个胶质母细胞瘤细胞具有增殖和侵袭的能力。

Individual glioblastoma cells harbor both proliferative and invasive capabilities during tumor progression.

机构信息

Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany.

出版信息

Neuro Oncol. 2023 Dec 8;25(12):2150-2162. doi: 10.1093/neuonc/noad109.

Abstract

BACKGROUND

Glioblastomas are characterized by aggressive and infiltrative growth, and by striking heterogeneity. The aim of this study was to investigate whether tumor cell proliferation and invasion are interrelated, or rather distinct features of different cell populations.

METHODS

Tumor cell invasion and proliferation were longitudinally determined in real-time using 3D in vivo 2-photon laser scanning microscopy over weeks. Glioblastoma cells expressed fluorescent markers that permitted the identification of their mitotic history or their cycling versus non-cycling cell state.

RESULTS

Live reporter systems were established that allowed us to dynamically determine the invasive behavior, and previous or actual proliferation of distinct glioblastoma cells, in different tumor regions and disease stages over time. Particularly invasive tumor cells that migrated far away from the main tumor mass, when followed over weeks, had a history of marked proliferation and maintained their proliferative capacity during brain colonization. Infiltrating cells showed fewer connections to the multicellular tumor cell network, a typical feature of gliomas. Once tumor cells colonized a new brain region, their phenotype progressively transitioned into tumor microtube-rich, interconnected, slower-cycling glioblastoma cells. Analysis of resected human glioblastomas confirmed a higher proliferative potential of tumor cells from the invasion zone.

CONCLUSIONS

The detection of glioblastoma cells that harbor both particularly high proliferative and invasive capabilities during brain tumor progression provides valuable insights into the interrelatedness of proliferation and migration-2 central traits of malignancy in glioma. This contributes to our understanding of how the brain is efficiently colonized in this disease.

摘要

背景

胶质母细胞瘤的特征是侵袭性和浸润性生长,以及明显的异质性。本研究旨在探讨肿瘤细胞增殖和侵袭是否相互关联,或者是不同细胞群体的不同特征。

方法

使用三维体内双光子激光扫描显微镜在数周内实时纵向测定肿瘤细胞的侵袭和增殖。胶质母细胞瘤细胞表达荧光标记物,允许识别其有丝分裂史或其循环与非循环细胞状态。

结果

建立了活报告系统,使我们能够动态地确定不同肿瘤区域和疾病阶段的不同胶质母细胞瘤细胞的侵袭行为、以前或当前的增殖情况。特别具有侵袭性的肿瘤细胞,当从主肿瘤块迁移很远时,当在数周内进行跟踪时,具有明显的增殖历史,并在大脑定植期间保持其增殖能力。浸润细胞与多细胞肿瘤细胞网络的连接较少,这是胶质瘤的一个典型特征。一旦肿瘤细胞定植于新的脑区,其表型逐渐转变为富含肿瘤微管、相互连接、增殖较慢的胶质母细胞瘤细胞。对切除的人类胶质母细胞瘤的分析证实,侵袭区的肿瘤细胞具有更高的增殖潜力。

结论

在脑肿瘤进展过程中检测到具有高增殖和侵袭能力的胶质母细胞瘤细胞,为增殖和迁移之间的关联性提供了有价值的见解,这是胶质瘤恶性的两个核心特征。这有助于我们理解大脑在这种疾病中是如何被有效定植的。

相似文献

2
Tweety-Homolog 1 Drives Brain Colonization of Gliomas.
J Neurosci. 2017 Jul 19;37(29):6837-6850. doi: 10.1523/JNEUROSCI.3532-16.2017. Epub 2017 Jun 12.
3
Time-lapse phenotyping of invasive glioma cells ex vivo reveals subtype-specific movement patterns guided by tumor core signaling.
Exp Cell Res. 2016 Dec 10;349(2):199-213. doi: 10.1016/j.yexcr.2016.08.001. Epub 2016 Aug 8.
5
MiR-148a inhibits the proliferation and migration of glioblastoma by targeting ITGA9.
Hum Cell. 2019 Oct;32(4):548-556. doi: 10.1007/s13577-019-00279-9. Epub 2019 Sep 5.
6
Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness.
J Exp Clin Cancer Res. 2017 Jan 9;36(1):9. doi: 10.1186/s13046-016-0482-0.
7
Glioblastoma hijacks neuronal mechanisms for brain invasion.
Cell. 2022 Aug 4;185(16):2899-2917.e31. doi: 10.1016/j.cell.2022.06.054. Epub 2022 Jul 31.
8
Tumor cell network integration in glioma represents a stemness feature.
Neuro Oncol. 2021 May 5;23(5):757-769. doi: 10.1093/neuonc/noaa275.
9
[The sodium pump could constitute a new target to combat glioblastomas].
Bull Cancer. 2008 Mar;95(3):271-81. doi: 10.1684/bdc.2008.0597.

引用本文的文献

2
Molecular recording of cellular protein kinase activity with chemical labeling.
Nat Chem Biol. 2025 Jul 10. doi: 10.1038/s41589-025-01949-6.
4
Spatial epigenomic niches underlie glioblastoma cell state plasticity.
bioRxiv. 2025 May 14:2025.05.09.653178. doi: 10.1101/2025.05.09.653178.
5
Spatiotemporal dynamics of tumor-CAR T-cell interaction following local administration in solid cancers.
PLoS Comput Biol. 2025 Jun 3;21(6):e1013117. doi: 10.1371/journal.pcbi.1013117.
6
Migrasomes: key players in immune regulation and promising medical applications.
Front Immunol. 2025 May 15;16:1592314. doi: 10.3389/fimmu.2025.1592314. eCollection 2025.
7
Innovative Therapeutic Strategies Targeting the Network Architecture of Glioblastoma.
Clin Cancer Res. 2025 Jul 15;31(14):2864-2871. doi: 10.1158/1078-0432.CCR-25-0018.
8
Morphoregulatory ADD3 underlies glioblastoma growth and formation of tumor-tumor connections.
Life Sci Alliance. 2024 Nov 26;8(2). doi: 10.26508/lsa.202402823. Print 2025 Feb.
10
KIF15 promotes human glioblastoma progression under the synergistic transactivation of REST and P300.
Int J Biol Sci. 2024 Sep 23;20(13):5127-5144. doi: 10.7150/ijbs.98668. eCollection 2024.

本文引用的文献

1
Glioblastoma hijacks neuronal mechanisms for brain invasion.
Cell. 2022 Aug 4;185(16):2899-2917.e31. doi: 10.1016/j.cell.2022.06.054. Epub 2022 Jul 31.
3
Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector biopsies.
Natl Sci Rev. 2020 Aug;7(8):1306-1318. doi: 10.1093/nsr/nwaa099. Epub 2020 May 30.
4
Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy.
Nature. 2021 Jun;594(7864):566-571. doi: 10.1038/s41586-021-03614-z. Epub 2021 Jun 2.
5
Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities.
Nat Cancer. 2021 Feb;2(2):141-156. doi: 10.1038/s43018-020-00159-4. Epub 2021 Jan 11.
6
Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma.
Nat Commun. 2021 Feb 12;12(1):1014. doi: 10.1038/s41467-021-21117-3.
7
Tumor cell network integration in glioma represents a stemness feature.
Neuro Oncol. 2021 May 5;23(5):757-769. doi: 10.1093/neuonc/noaa275.
8
Identification of Conserved Proteomic Networks in Neurodegenerative Dementia.
Cell Rep. 2020 Jun 23;31(12):107807. doi: 10.1016/j.celrep.2020.107807.
9
p120-catenin-dependent collective brain infiltration by glioma cell networks.
Nat Cell Biol. 2020 Jan;22(1):97-107. doi: 10.1038/s41556-019-0443-x. Epub 2020 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验