Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia.
Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, Georgia; Departments of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA, Georgia.
Vascul Pharmacol. 2022 Oct;146:107093. doi: 10.1016/j.vph.2022.107093. Epub 2022 Jul 30.
Leptin plays a crucial role in blood pressure (BP) regulation, notably in the context of obesity through central sympatho-mediated pressor effects. Leptin also relaxes arteries via endothelial (EC) leptin receptor (LepR)-mediated increases in nitric oxide (NO) bioavailability. Herein, we investigated whether leptin-mediated increases in NO bioavailability represent a buffering mechanism against leptin-induced sympatho-activation. We tested the direct contribution of LepR to BP regulation in physiological conditions and in response to chronic leptin infusion using mice deficient in LepR. LepR deficiency did not alter baseline metabolic profile nor leptin-induced reduction in adiposity and increases in energy expenditure. LepR mice demonstrated no increase in baseline BP and heart rate (HR) (MAP: LepR:94.7 ± 1.6, LepR:95.1 ± 1.8 mmHg; HR:LepR:492.4 ± 11.7, LepR:509.5 ± 13.4 bpm) nor in response to leptin (MAP, LepR:101.1 ± 1.7, LepR:101.7 ± 1.8 mmHg; HR, LepR:535.6 ± 11.1, LepR:539.3 ± 14.2 bpm). Moreover, baseline neurogenic control of BP and HR was preserved in LepR mice as well as leptin-mediated increases in sympathetic control of BP and HR and decreases in vagal tone. Remarkably, LepR deficiency did not alter endothelium-dependent relaxation in resistance vessels, nor NO contribution to vasodilatation. Lastly, leptin induced similar increases in adrenergic contractility in mesenteric arteries from both LepR and LepR mice. Collectively, these results demonstrate that the NO buffering effects of leptin are absent in resistance arteries and do not contribute to BP regulation. We provide further evidence that leptin-mediated hypertension involves increased vascular sympatho-activation and extend these findings by demonstrating for the first time that increased cardiac sympatho-activation and reduced vagal tone also contribute to leptin-mediated hypertension.
瘦素在血压(BP)调节中起着至关重要的作用,尤其是在肥胖情况下通过中枢交感介导的升压作用。瘦素还通过内皮(EC)瘦素受体(LepR)介导的一氧化氮(NO)生物利用度增加来使动脉松弛。在此,我们研究了瘦素介导的 NO 生物利用度增加是否代表对瘦素诱导的交感激活的缓冲机制。我们使用 LepR 缺乏的小鼠测试了 LepR 对生理条件下和慢性瘦素输注反应中 BP 调节的直接贡献。LepR 缺乏不会改变基线代谢特征,也不会改变瘦素诱导的脂肪减少和能量消耗增加。LepR 小鼠的基线 BP 和心率(HR)没有增加(MAP:LepR:94.7±1.6,LepR:95.1±1.8mmHg;HR:LepR:492.4±11.7,LepR:509.5±13.4bpm),也没有对瘦素做出反应(MAP,LepR:101.1±1.7,LepR:101.7±1.8mmHg;HR,LepR:535.6±11.1,LepR:539.3±14.2bpm)。此外,LepR 小鼠的 BP 和 HR 的神经源性基础控制以及瘦素介导的 BP 和 HR 的交感神经控制增加和迷走神经张力降低得到了保留。值得注意的是,LepR 缺乏并没有改变阻力血管中的内皮依赖性松弛,也没有改变 NO 对血管扩张的贡献。最后,瘦素诱导的肠系膜动脉的肾上腺素能收缩性在 LepR 和 LepR 小鼠中均增加。总之,这些结果表明,瘦素的 NO 缓冲作用在阻力血管中不存在,并且对 BP 调节没有贡献。我们提供了进一步的证据,表明瘦素介导的高血压涉及血管交感神经激活的增加,并通过首次证明增加的心脏交感神经激活和降低的迷走神经张力也有助于瘦素介导的高血压,扩展了这些发现。