Kamlapure Anand, Simonato Manuel, Sierda Emil, Steinbrecher Manuel, Kamber Umut, Knol Elze J, Krogstrup Peter, Katsnelson Mikhail I, Rösner Malte, Khajetoorians Alexander Ako
Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands.
Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
Nat Commun. 2022 Aug 1;13(1):4452. doi: 10.1038/s41467-022-31948-3.
The influence of interface electronic structure is vital to control lower dimensional superconductivity and its applications to gated superconducting electronics, and superconducting layered heterostructures. Lower dimensional superconductors are typically synthesized on insulating substrates to reduce interfacial driven effects that destroy superconductivity and delocalize the confined wavefunction. Here, we demonstrate that the hybrid electronic structure formed at the interface between a lead film and a semiconducting and highly anisotropic black phosphorus substrate significantly renormalizes the superconductivity in the lead film. Using ultra-low temperature scanning tunneling microscopy and spectroscopy, we characterize the renormalization of lead's quantum well states, its superconducting gap, and its vortex structure which show strong anisotropic characteristics. Density functional theory calculations confirm that the renormalization of superconductivity is driven by hybridization at the interface which modifies the confinement potential and imprints the anisotropic characteristics of the semiconductor substrate on selected regions of the Fermi surface of lead. Using an analytical model, we link the modulated superconductivity to an anisotropy that selectively tunes the superconducting order parameter in reciprocal space. These results illustrate that interfacial hybridization can be used to tune superconductivity in quantum technologies based on lower dimensional superconducting electronics.
界面电子结构的影响对于控制低维超导及其在门控超导电子学和超导层状异质结构中的应用至关重要。低维超导体通常在绝缘衬底上合成,以减少破坏超导性并使受限波函数离域的界面驱动效应。在此,我们证明在铅膜与半导体且高度各向异性的黑磷衬底之间的界面处形成的混合电子结构显著重整了铅膜中的超导性。利用超低温扫描隧道显微镜和光谱学,我们表征了铅的量子阱态、其超导能隙以及其涡旋结构的重整化,这些都呈现出强烈的各向异性特征。密度泛函理论计算证实,超导性的重整化是由界面处的杂化驱动的,这种杂化改变了限制势,并将半导体衬底的各向异性特征印刻在铅的费米面的选定区域上。使用一个解析模型,我们将调制后的超导性与一种各向异性联系起来,这种各向异性在倒易空间中选择性地调节超导序参量。这些结果表明,界面杂化可用于在基于低维超导电子学的量子技术中调节超导性。