Pavlovic Ljiljana, Mendelsohn Lauren N, Zhong Hongyu, Chirik Paul J, Hopmann Kathrin H
Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Organometallics. 2022 Jul 25;41(14):1872-1882. doi: 10.1021/acs.organomet.2c00180.
The mechanistic details of the (BPE)Co-catalyzed asymmetric hydrogenation of enamides are investigated using computational and experimental approaches. Four mechanistic possibilities are compared: a direct Co(0)/Co(II) redox path, a metathesis pathway, a nonredox Co(II) mechanism featuring an aza-metallacycle, and a possible enamide-imine tautomerization pathway. The results indicate that the operative mechanism may depend on the type of enamide. Explicit solvent is found to be crucial for the stabilization of transition states and for a proper estimation of the enantiomeric excess. The combined results highlight the complexity of base-metal-catalyzed hydrogenations but do also provide guiding principles for a mechanistic understanding of these systems, where protic substrates can be expected to open up nonredox hydrogenation pathways.
采用计算和实验方法研究了(BPE)钴共催化烯酰胺不对称氢化反应的机理细节。比较了四种可能的机理:直接的Co(0)/Co(II)氧化还原路径、复分解路径、以氮杂金属环为特征的非氧化还原Co(II)机理以及可能的烯酰胺-亚胺互变异构路径。结果表明,起作用的机理可能取决于烯酰胺的类型。发现明确的溶剂对于过渡态的稳定以及对映体过量的正确估计至关重要。综合结果突出了贱金属催化氢化反应的复杂性,但也为这些体系的机理理解提供了指导原则,其中质子性底物有望开辟非氧化还原氢化路径。