Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Department of Chemistry, UiT - The Arctic University of Norway, Tromsø N-9037, Norway.
J Am Chem Soc. 2022 Aug 31;144(34):15764-15778. doi: 10.1021/jacs.2c06454. Epub 2022 Aug 11.
The mechanism of the asymmetric hydrogenation of prochiral enamides by well-defined, neutral bis(phosphine) cobalt(0) and cobalt(II) precatalysts has been explored using(,)-DuPhos ((,)-DuPhos = (+)-1,2-bis[(2,5)-2,5-diisopropylphospholano]benzene) as a representative chiral bis(phosphine) ligand. A series of (,)-(DuPhos)Co(enamide) (enamide = methyl-2-acetamidoacrylate (MAA), methyl()-α-acetamidocinnamate (MAC), and methyl()-acetamido(4-fluorophenyl)acrylate (MAC)) complexes (, , and ), as well as a dinuclear cobalt tetrahydride, (,)-(DuPhos)Co(H) (), were independently synthesized, characterized, and evaluated in both stoichiometric and catalytic hydrogenation reactions. Characterization of (,)-(DuPhos)Co(enamide) complexes by X-ray diffraction established the formation of the pro-() diastereomers in contrast to the ()-alkane products obtained from the catalytic reaction. In situ monitoring of the cobalt-catalyzed hydrogenation reactions by UV-visible and freeze-quench electron paramagnetic resonance spectroscopies revealed (,)-(DuPhos)Co(enamide) complexes as the catalyst resting state for all the three enamides studied. Variable time normalization analysis kinetic studies of the cobalt-catalyzed hydrogenation reactions in methanol established a rate law that is first order in (,)-(DuPhos)Co(enamide) and H but independent of the enamide concentration. Deuterium-labeling studies, including measurement of an H/D kinetic isotope effect and catalytic hydrogenations with HD, established an irreversible H addition step to the bound enamide. Density functional theory calculations support that this step is both rate and selectivity determining. Calculations, as well as HD-labeling studies, provide evidence for two-electron redox cycling involving cobalt(0) and cobalt(II) intermediates during the catalytic cycle. Taken together, these experiments support an unsaturated pathway for the [(,)-(DuPhos)Co]-catalyzed hydrogenation of prochiral enamides.
已使用(,)-DuPhos((,)-DuPhos = (+)-1,2-双[(2,5)-2,5-二异丙基膦基]苯)作为代表性的手性双膦配体,探索了手性确定的中性双(膦)钴(0)和钴(II)前催化剂对前手性烯酰胺的不对称氢化的机理。一系列(,)-(DuPhos)Co(烯酰胺)(烯酰胺=甲基-2-乙酰氨基丙烯酸酯(MAA),甲基()-α-乙酰氨基肉桂酸酯(MAC)和甲基()-乙酰氨基(4-氟苯基)丙烯酸酯(MAC))配合物(,,和),以及双核钴四氢化物,[(,)-(DuPhos)Co](μ-H)(()),分别独立合成,表征并在计量和催化氢化反应中进行了评估。通过 X 射线衍射对(,)-(DuPhos)Co(烯酰胺)配合物的表征确定了前()对映异构体的形成,与催化反应中获得的()-烷产物形成对比。通过紫外-可见和冷冻淬灭电子顺磁共振光谱原位监测钴催化氢化反应,揭示了(,)-(DuPhos)Co(烯酰胺)配合物是所有三种烯酰胺研究的催化剂静止状态。甲醇中钴催化氢化反应的变时归一化分析动力学研究建立了一个速率定律,该速率定律在(,)-(DuPhos)Co(烯酰胺)和 H 中为一级,但与烯酰胺浓度无关。氘标记研究,包括测量 H/D 动力学同位素效应和用 HD 进行的催化加氢,确定了与结合的烯酰胺不可逆的 H 添加步骤。密度泛函理论计算支持该步骤既是速率决定因素又是选择性决定因素。计算以及 HD 标记研究为催化循环中涉及钴(0)和钴(II)中间体的两电子氧化还原循环提供了证据。总而言之,这些实验支持前手性烯酰胺的[(,)-(DuPhos)Co]-催化氢化的不饱和途径。