Wolsztynski Eric, O'Sullivan Finbarr, Eary Janet F
University College Cork, Statistics Department, Cork, Ireland.
Insight SFI Research Centre for Data Analytics, Cork, Ireland.
J Med Imaging (Bellingham). 2022 Jul;9(4):045003. doi: 10.1117/1.JMI.9.4.045003. Epub 2022 Jul 29.
Radiomics have become invaluable for non-invasive cancer patient risk prediction, and the community now turns to exogenous assessment, e.g., from genomics, for interpretability of these agnostic analyses. Yet, some opportunities for clinically interpretable modeling of positron emission tomography (PET) imaging data remain unexplored, that could facilitate insightful characterization at voxel level. Here, we present a novel deformable tubular representation of the distribution of tracer uptake within a volume of interest, and derive interpretable prognostic summaries from it. This data-adaptive strategy yields a 3D-coherent and smooth model fit, and a profile curve describing tracer uptake as a function of voxel location within the volume. Local trends in uptake rates are assessed at each voxel via the calculation of gradients derived from this curve. Intratumoral heterogeneity can also be assessed directly from it. We illustrate the added value of this approach over previous strategies, in terms of volume rendering and coherence of the structural representation of the data. We further demonstrate consistency of the implementation via simulations, and prognostic potential of heterogeneity and statistical summaries of the uptake gradients derived from the model on a clinical cohort of 158 sarcoma patients imaged with -fluorodeoxyglucose-PET, in multivariate prognostic models of patient survival. The proposed approach captures uptake characteristics consistently at any location, and yields a description of variations in uptake that holds prognostic value complementarily to structural heterogeneity. This creates opportunities for monitoring of local areas of greater interest within a tumor, e.g., to assess therapeutic response in avid locations.
放射组学在非侵入性癌症患者风险预测中已变得至关重要,目前该领域正转向从基因组学等外源评估方法,以实现这些不可知分析的可解释性。然而,正电子发射断层扫描(PET)成像数据的临床可解释建模的一些机会仍未被探索,这些机会有助于在体素水平进行有洞察力的特征描述。在此,我们提出一种新颖的可变形管状表示法,用于描述感兴趣体积内示踪剂摄取的分布,并从中得出可解释的预后总结。这种数据自适应策略产生了一个三维连贯且平滑的模型拟合,以及一条描述示踪剂摄取随体积内体素位置变化的轮廓曲线。通过计算从该曲线得出的梯度,在每个体素处评估摄取率的局部趋势。肿瘤内异质性也可直接从该曲线进行评估。我们通过数据的体绘制和结构表示的连贯性,说明了这种方法相对于先前策略的附加价值。我们还通过模拟进一步证明了该方法实施的一致性,以及在158例接受氟脱氧葡萄糖-PET成像的肉瘤患者临床队列的多变量患者生存预后模型中,从模型得出的摄取梯度的异质性和统计总结的预后潜力。所提出的方法能够在任何位置一致地捕捉摄取特征,并产生对摄取变化的描述,其具有与结构异质性互补的预后价值。这为监测肿瘤内更感兴趣的局部区域创造了机会,例如评估高摄取部位对治疗的反应。