Suppr超能文献

基于正电子发射断层扫描的肉瘤代谢梯度及其他预后特征评估

Positron emission tomography-based assessment of metabolic gradient and other prognostic features in sarcoma.

作者信息

Wolsztynski Eric, O'Sullivan Finbarr, Keyes Eimear, O'Sullivan Janet, Eary Janet F

机构信息

University College Cork, Statistics Department, Cork, Ireland.

National Cancer Institute, Bethesda, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2018 Apr;5(2):024502. doi: 10.1117/1.JMI.5.2.024502. Epub 2018 May 24.

Abstract

Intratumoral heterogeneity biomarkers derived from positron emission tomography (PET) imaging with fluorodeoxyglucose (FDG) are of interest for a number of cancers, including sarcoma. A range of radiomic texture variables, adapted from general methodologies for image analysis, has shown promise in the setting. In the context of sarcoma, our group introduced an alternative model-based approach to the measurement of heterogeneity. In this approach, the heterogeneity of a tumor is characterized by the extent to which the 3-D FDG uptake pattern deviates from a simple elliptically contoured structure. By using a nonparametric analysis of the uptake profile obtained from this spatial model, a variable assessing the metabolic gradient of the tumor is developed. The work explores the prognostic potential of this new variable in the context of FDG-PET imaging of sarcoma. A mature clinical series involving 197 patients, 88 of whom have complete time-to-death information, is used. Texture variables based on the imaging data are also evaluated in this series and a range of appropriate machine learning methodologies are then used to explore the complementary prognostic roles for structure and texture variables. We conclude that both texture-based and model-based variables can be combined to achieve enhanced prognostic assessments of outcome for patients with sarcoma based on FDG-PET imaging information.

摘要

源自正电子发射断层扫描(PET)成像且使用氟脱氧葡萄糖(FDG)的瘤内异质性生物标志物,在包括肉瘤在内的多种癌症中受到关注。一系列从图像分析通用方法改编而来的放射组学纹理变量,在此背景下已显示出前景。在肉瘤的背景下,我们团队引入了一种基于模型的替代方法来测量异质性。在这种方法中,肿瘤的异质性通过三维FDG摄取模式偏离简单椭圆形轮廓结构的程度来表征。通过对从该空间模型获得的摄取轮廓进行非参数分析,开发了一个评估肿瘤代谢梯度的变量。这项工作探讨了这个新变量在肉瘤FDG-PET成像背景下的预后潜力。使用了一个涉及197名患者的成熟临床系列,其中88名患者有完整的死亡时间信息。本系列还评估了基于成像数据的纹理变量,然后使用一系列适当的机器学习方法来探索结构和纹理变量的互补预后作用。我们得出结论,基于纹理和基于模型的变量可以结合起来,以基于FDG-PET成像信息对肉瘤患者的预后结果进行增强评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3406/5967597/2ab80563c21d/JMI-005-024502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验