Klein Benedikt P, Ihle Alexander, Kachel Stefan R, Ruppenthal Lukas, Hall Samuel J, Sattler Lars, Weber Sebastian M, Herritsch Jan, Jaegermann Andrea, Ebeling Daniel, Maurer Reinhard J, Hilt Gerhard, Tonner-Zech Ralf, Schirmeisen André, Gottfried J Michael
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032 Marburg, Germany.
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom.
ACS Nano. 2022 Aug 23;16(8):11979-11987. doi: 10.1021/acsnano.2c01952. Epub 2022 Aug 2.
Defects play a critical role for the functionality and performance of materials, but the understanding of the related effects is often lacking, because the typically low concentrations of defects make them difficult to study. A prominent case is the topological defects in two-dimensional materials such as graphene. The performance of graphene-based (opto-)electronic devices depends critically on the properties of the graphene/metal interfaces at the contacting electrodes. The question of how these interface properties depend on the ubiquitous topological defects in graphene is of high practical relevance, but could not be answered so far. Here, we focus on the prototypical Stone-Wales (S-W) topological defect and combine theoretical analysis with experimental investigations of molecular model systems. We show that the embedded defects undergo enhanced bonding and electron transfer with a copper surface, compared to regular graphene. These findings are experimentally corroborated using molecular models, where azupyrene mimics the S-W defect, while its isomer pyrene represents the ideal graphene structure. Experimental interaction energies, electronic-structure analysis, and adsorption distance differences confirm the defect-controlled bonding quantitatively. Our study reveals the important role of defects for the electronic coupling at graphene/metal interfaces and suggests that topological defect engineering can be used for performance control.
缺陷对材料的功能和性能起着关键作用,但由于缺陷的浓度通常很低,难以对其进行研究,因此人们往往缺乏对相关效应的理解。一个突出的例子是二维材料(如石墨烯)中的拓扑缺陷。基于石墨烯的(光)电子器件的性能关键取决于接触电极处石墨烯/金属界面的性质。这些界面性质如何依赖于石墨烯中普遍存在的拓扑缺陷这一问题具有很高的实际意义,但到目前为止尚未得到解答。在此,我们聚焦于典型的斯通-威尔士(S-W)拓扑缺陷,并将理论分析与分子模型系统的实验研究相结合。我们表明,与规则石墨烯相比,嵌入的缺陷与铜表面发生了增强的键合和电子转移。使用分子模型对这些发现进行了实验验证,其中氮杂芘模拟S-W缺陷,而其异构体芘代表理想的石墨烯结构。实验相互作用能、电子结构分析和吸附距离差异定量地证实了缺陷控制的键合。我们的研究揭示了缺陷在石墨烯/金属界面电子耦合中的重要作用,并表明拓扑缺陷工程可用于性能控制。