Zhang Yuqing, Wang Junzhuo, Zhang Yinghan, Zheng Qi, Wang Lianjun, Jiang Wan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, China.
Adv Sci (Weinh). 2025 Mar;12(9):e2416210. doi: 10.1002/advs.202416210. Epub 2025 Jan 9.
High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cm⁻¹, out-of-plane: 5541 S cm⁻¹) and excellent mechanical strength (flexural: 101.17±5.73 MPa, compressive: 151.56±2.53 MPa). Co nanoparticles act as autocatalysts and binders, promoting strong interlayer adhesion among highly graphitized graphene layers via spark plasma sintering. The strong nano-interfaces between graphite and Co-create critical bridges between graphene nanosheets, facilitating highly efficient electron migration and enhanced strength and stiffness of the assembled bulk nanocomposites. Leveraging these exceptional properties, practical demonstrations highlight the immense potential of the robust material for applications demanding superior electromagnetic interference shielding and efficient heating. An innovative approach, which effectively decouples electrical conductivity from mechanical properties, paves the way for the creation of HPBGs tailored for diverse application sectors.
同时兼具卓越导电性和出色强度的高性能块状石墨(HPBG)需求旺盛,但实现起来仍然至关重要且具有挑战性。在此,引入了一种新颖的方法,利用金属有机框架衍生的纳米多孔金属/碳复合材料作为前驱体,以规避这种传统的权衡。所得的块状石墨由密集堆积的多层石墨烯片组成,这些石墨烯片被多种钴形态(纳米颗粒、单原子和团簇)官能化,在各个方向上均展现出前所未有的电导率(面内:7311 S cm⁻¹,面外:5541 S cm⁻¹)以及出色的机械强度(弯曲强度:101.17±5.73 MPa,压缩强度:151.56±2.53 MPa)。钴纳米颗粒充当自催化剂和粘结剂,通过放电等离子烧结促进高度石墨化的石墨烯层之间形成强的层间附着力。石墨与钴之间强大的纳米界面在石墨烯纳米片之间创建了关键的桥梁,促进了高效的电子迁移,并增强了组装的块状纳米复合材料的强度和刚度。利用这些优异性能,实际演示突出了这种坚固材料在要求卓越电磁干扰屏蔽和高效加热的应用中的巨大潜力。一种有效将电导率与机械性能解耦的创新方法,为创建针对不同应用领域量身定制的HPBG铺平了道路。