Suppr超能文献

古菌转录终止因子 Eta 的结构和活性详细说明了转录延伸复合物的脆弱性。

The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex.

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523.

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2207581119. doi: 10.1073/pnas.2207581119. Epub 2022 Aug 2.

Abstract

Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.

摘要

转录必须得到适当的调控,以确保生长、发育和对外界线索的反应所必需的基因表达的动态性。调控贯穿于整个转录周期,尽管许多研究已经详细描述了转录起始和早期延伸的调控,但转录终止阶段也在调节基因表达方面起着至关重要的作用。转录终止可以仅由生命各个领域中的少数几种蛋白质驱动。详细描述所采用的机制可以深入了解转录延伸复合物(TEC)的脆弱性,这些脆弱性允许受调控的终止来控制许多基因和操纵子的表达。在这里,我们描述了超级家族 2 解旋酶 Eta 的生化活性和晶体结构,Eta 是两种已知能够破坏古菌转录延伸复合物的因子之一。Eta 保留了所有超级家族 2 解旋酶共有的双转位酶核心结构域和高度保守的 C 末端,其中单个氨基酸取代可以严重破坏终止活性。破坏 ATP 酶、解旋酶、单链 DNA 和双链 DNA 转位酶以及终止活性的 Eta 变体确定了 Eta C 末端的关键区域,当与 Eta-TEC 相互作用建模结合使用时,提供了 Eta 介导的终止的结构模型,该模型部分受 Mfd 和细菌 TEC 的结构指导。TEC 易受靶向 RNA 聚合酶上游表面的终止因子的破坏,并且可能通过向前移位和有利于打开夹子以释放被包裹的核酸的变构机制驱动终止,这成为转录终止机制的一个共同特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b40/9371683/e77e8679c601/pnas.2207581119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验