Suppr超能文献

暹罗边界感知网络:基于暹罗框自适应网络的目标感知跟踪

SiamBAN: Target-Aware Tracking With Siamese Box Adaptive Network.

作者信息

Chen Zedu, Zhong Bineng, Li Guorong, Zhang Shengping, Ji Rongrong, Tang Zhenjun, Li Xianxian

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):5158-5173. doi: 10.1109/TPAMI.2022.3195759. Epub 2023 Mar 7.

Abstract

Variation of scales or aspect ratios has been one of the main challenges for tracking. To overcome this challenge, most existing methods adopt either multi-scale search or anchor-based schemes, which use a predefined search space in a handcrafted way and therefore limit their performance in complicated scenes. To address this problem, recent anchor-free based trackers have been proposed without using prior scale or anchor information. However, an inconsistency problem between classification and regression degrades the tracking performance. To address the above issues, we propose a simple yet effective tracker (named Siamese Box Adaptive Network, SiamBAN) to learn a target-aware scale handling schema in a data-driven manner. Our basic idea is to predict the target boxes in a per-pixel fashion through a fully convolutional network, which is anchor-free. Specifically, SiamBAN divides the tracking problem into classification and regression tasks, which directly predict objectiveness and regress bounding boxes, respectively. A no-prior box design is proposed to avoid tuning hyper-parameters related to candidate boxes, which makes SiamBAN more flexible. SiamBAN further uses a target-aware branch to address the inconsistency problem. Experiments on benchmarks including VOT2018, VOT2019, OTB100, UAV123, LaSOT and TrackingNet show that SiamBAN achieves promising performance and runs at 35 FPS.

摘要

尺度或宽高比的变化一直是跟踪的主要挑战之一。为了克服这一挑战,大多数现有方法采用多尺度搜索或基于锚点的方案,这些方法以手工方式使用预定义的搜索空间,因此在复杂场景中限制了它们的性能。为了解决这个问题,最近提出了基于无锚点的跟踪器,不使用先验尺度或锚点信息。然而,分类和回归之间的不一致问题降低了跟踪性能。为了解决上述问题,我们提出了一种简单而有效的跟踪器(名为暹罗框自适应网络,SiamBAN),以数据驱动的方式学习目标感知尺度处理模式。我们的基本思想是通过一个全卷积网络以逐像素的方式预测目标框,该网络是无锚点的。具体来说,SiamBAN将跟踪问题分为分类和回归任务,分别直接预测目标性和回归边界框。提出了一种无先验框设计,以避免调整与候选框相关的超参数,这使得SiamBAN更加灵活。SiamBAN还使用一个目标感知分支来解决不一致问题。在包括VOT2018、VOT2019、OTB100、UAV123、LaSOT和TrackingNet在内的基准测试表明,SiamBAN取得了有前景的性能,运行速度为35帧每秒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验