Suppr超能文献

一种结合烟花算法的混合贪婪政治优化器,用于数值和工程优化问题。

A hybrid greedy political optimizer with fireworks algorithm for numerical and engineering optimization problems.

作者信息

Dong Jian, Zou Heng, Li Wenyu, Wang Meng

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Sci Rep. 2022 Aug 2;12(1):13243. doi: 10.1038/s41598-022-17076-4.

Abstract

This paper proposes a novel hybrid optimization algorithm named GPOFWA, which integrates political optimizer (PO) with fireworks algorithm (FWA) to solve numerical and engineering optimization problems. The original PO uses subgroup optimal solutions such as party leaders and constituency winners to guide the movement of the search agent. However, the number of such subgroup optimal solutions is limited, which leads to insufficient global exploration capabilities of PO. In addition, the recent past-based position updating strategy (RPPUS) of PO lacks effective verification of the updated candidate solutions, which reduces the convergence speed of the algorithm. The proposed hybrid algorithm uses the spark explosion mechanism in FWA to perform explosion spark and Gauss explosion spark operations on the subgroup optimal solutions (party leader and constituency winner) respectively based on the greedy strategy, which optimizes the subgroup optimal solution and enhances the exploitative ability of the algorithm. Moreover, Gaussian explosion sparks are also used to correct the candidate solutions after RPPUS, which makes up for the shortcomings of the original PO. In addition, a new subgroup optimal solution called the Converged Mobile Center (CMC) based on two-way consideration is designed to guide the movement of search agents and maintain the population diversity. We test the presented hybrid algorithm on 30 well-known benchmark functions, CEC2019 benchmark functions and three engineering optimization problems. The experimental results show that GPOFWA is superior to many statE-of-thE-art methods in terms of the quality of the resulting solution.

摘要

本文提出了一种名为GPOFWA的新型混合优化算法,该算法将政治优化器(PO)与烟花算法(FWA)相结合,用于解决数值和工程优化问题。原始的PO使用诸如政党领袖和选区获胜者等子群体最优解来引导搜索代理的移动。然而,此类子群体最优解的数量有限,这导致PO的全局探索能力不足。此外,PO的基于近期过去的位置更新策略(RPPUS)对更新后的候选解缺乏有效的验证,这降低了算法的收敛速度。所提出的混合算法利用FWA中的火花爆炸机制,基于贪婪策略分别对该子群体最优解(政党领袖和选区获胜者)进行爆炸火花和高斯爆炸火花操作,从而优化子群体最优解并增强算法的剥削能力。此外,高斯爆炸火花还用于在RPPUS之后校正候选解,弥补了原始PO的不足。此外,还设计了一种基于双向考虑的新的子群体最优解——收敛移动中心(CMC),以引导搜索代理的移动并保持种群多样性。我们在30个著名的基准函数、CEC2019基准函数和三个工程优化问题上测试了所提出的混合算法。实验结果表明,GPOFWA在所得解的质量方面优于许多现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5b1/9345870/fbabf9a9431e/41598_2022_17076_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验