文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脊椎动物耳石蛋白质子通道的亚型特异性 pH 敏感性门控的结构基序。

Structural motifs for subtype-specific pH-sensitive gating of vertebrate otopetrin proton channels.

机构信息

Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, United States.

Program in Neuroscience, University of Southern California, Los Angeles, United States.

出版信息

Elife. 2022 Aug 3;11:e77946. doi: 10.7554/eLife.77946.


DOI:10.7554/eLife.77946
PMID:35920807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9348849/
Abstract

Otopetrin (OTOP) channels are proton-selective ion channels conserved among vertebrates and invertebrates, with no structural similarity to other ion channels. There are three vertebrate OTOP channels (OTOP1, OTOP2, and OTOP3), of which one (OTOP1) functions as a sour taste receptor. Whether extracellular protons gate OTOP channels, in addition to permeating them, was not known. Here, we compare the functional properties of the three murine OTOP channels using patch-clamp recording and cytosolic pH microfluorimetry. We find that OTOP1 and OTOP3 are both steeply activated by extracellular protons, with thresholds of pH <6.0 and 5.5, respectively, and kinetics that are pH-dependent. In contrast, OTOP2 channels are broadly active over a large pH range (pH 5 pH 10) and carry outward currents in response to extracellular alkalinization (>pH 9.0). Strikingly, we could change the pH-sensitive gating of OTOP2 and OTOP3 channels by swapping extracellular linkers that connect transmembrane domains. Swaps of extracellular linkers in the N domain, comprising transmembrane domains 1-6, tended to change the relative conductance at alkaline pH of chimeric channels, while swaps within the C domain, containing transmembrane domains 7-12, tended to change the rates of OTOP3 current activation. We conclude that members of the OTOP channel family are proton-gated (acid-sensitive) proton channels and that the gating apparatus is distributed across multiple extracellular regions within both the N and C domains of the channels. In addition to the taste system, OTOP channels are expressed in the vertebrate vestibular and digestive systems. The distinct gating properties we describe may allow them to subserve varying cell-type specific functions in these and other biological systems.

摘要

耳石蛋白 (OTOP) 通道是脊椎动物和无脊椎动物中保守的质子选择性离子通道,与其他离子通道没有结构相似性。脊椎动物中有三种 OTOP 通道(OTOP1、OTOP2 和 OTOP3),其中一种(OTOP1)作为酸味受体发挥作用。细胞外质子是否除了渗透之外还能打开 OTOP 通道尚不清楚。在这里,我们使用膜片钳记录和细胞质 pH 微荧光法比较了三种鼠类 OTOP 通道的功能特性。我们发现 OTOP1 和 OTOP3 均被细胞外质子强烈激活,其阈值分别为 pH <6.0 和 5.5,动力学与 pH 相关。相比之下,OTOP2 通道在较大的 pH 范围内(pH 5 pH 10)广泛活跃,并对细胞外碱化(>pH 9.0)产生外向电流。引人注目的是,我们可以通过交换连接跨膜域的细胞外连接体来改变 OTOP2 和 OTOP3 通道的 pH 敏感门控。交换 N 域中的细胞外连接体(包含跨膜域 1-6)往往会改变嵌合通道在碱性 pH 下的相对电导,而在 C 域内交换(包含跨膜域 7-12)则往往会改变 OTOP3 电流激活的速率。我们得出结论,OTOP 通道家族的成员是质子门控(酸敏感)质子通道,门控装置分布在通道的 N 域和 C 域的多个细胞外区域内。除了味觉系统外,OTOP 通道还在脊椎动物前庭和消化系统中表达。我们描述的独特门控特性可能使它们在这些和其他生物系统中发挥不同的细胞类型特异性功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/fd56dfaad58c/elife-77946-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/61a0beaf3466/elife-77946-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/e9aa4d958489/elife-77946-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/0abadd9c50fd/elife-77946-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/d1e1faf8817d/elife-77946-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/0194bfacc326/elife-77946-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/8e148c9a63b5/elife-77946-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/224250b9fa92/elife-77946-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/6e991c046521/elife-77946-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/599d4cdc9f0b/elife-77946-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/8b645fdd8827/elife-77946-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/873784522804/elife-77946-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/da7f6f819fad/elife-77946-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/fd56dfaad58c/elife-77946-fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/61a0beaf3466/elife-77946-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/e9aa4d958489/elife-77946-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/0abadd9c50fd/elife-77946-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/d1e1faf8817d/elife-77946-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/0194bfacc326/elife-77946-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/8e148c9a63b5/elife-77946-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/224250b9fa92/elife-77946-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/6e991c046521/elife-77946-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/599d4cdc9f0b/elife-77946-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/8b645fdd8827/elife-77946-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/873784522804/elife-77946-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/da7f6f819fad/elife-77946-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b4/9348849/fd56dfaad58c/elife-77946-fig9.jpg

相似文献

[1]
Structural motifs for subtype-specific pH-sensitive gating of vertebrate otopetrin proton channels.

Elife. 2022-8-3

[2]
Zinc activation of OTOP proton channels identifies structural elements of the gating apparatus.

Elife. 2023-4-13

[3]
The roles of two extracellular loops in proton sensing and permeation in human Otop1 proton channel.

Commun Biol. 2022-10-20

[4]
Structures of the otopetrin proton channels Otop1 and Otop3.

Nat Struct Mol Biol. 2019-6-3

[5]
Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses.

BMC Evol Biol. 2011-1-24

[6]
Structural mechanism of proton conduction in otopetrin proton channel.

Nat Commun. 2024-8-23

[7]
Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members.

BMC Evol Biol. 2008-2-6

[8]
Activation of mouse Otop3 proton channels by Zn.

Biochem Biophys Res Commun. 2023-5-28

[9]
Emerging issues of connexin channels: biophysics fills the gap.

Q Rev Biophys. 2001-8

[10]
An evolutionarily conserved gene family encodes proton-selective ion channels.

Science. 2018-1-25

引用本文的文献

[1]
Genetic analysis of non-syndromic peg lateralis using whole-exome sequencing.

Front Genet. 2025-8-13

[2]
Paramutation-Like Behavior of Genic piRNA-Producing Loci in .

Int J Mol Sci. 2025-4-29

[3]
Preferential allosteric modulation of Otop1 channels by small molecule compounds.

Commun Biol. 2025-2-26

[4]
Epitope Tagging with Genome Editing in Mice Reveals That the Proton Channel OTOP1 Is Apically Localized and Not Restricted to Type III "Sour" Taste Receptor Cells.

J Neurosci. 2025-2-5

[5]
Zinc inhibits the voltage-gated proton channel HCNL1.

Biophys J. 2024-12-17

[6]
Structural mechanism of proton conduction in otopetrin proton channel.

Nat Commun. 2024-8-23

[7]
Determination of the Immunomodulatory Role of OTOP2 in Colon Adenocarcinoma.

J Cancer. 2024-7-16

[8]
Neuroendocrine cells initiate protective upper airway reflexes.

Science. 2024-4-19

[9]
The ion channels of endomembranes.

Physiol Rev. 2024-7-1

[10]
Transcendent Aspects of Proton Channels.

Annu Rev Physiol. 2024-2-12

本文引用的文献

[1]
Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes.

Cell. 2022-6-23

[2]
pH regulates potassium conductance and drives a constitutive proton current in human TMEM175.

Sci Adv. 2022-3-25

[3]
Requirement for an Otopetrin-like protein for acid taste in .

Proc Natl Acad Sci U S A. 2021-12-21

[4]
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.

Nucleic Acids Res. 2022-1-7

[5]
An otopetrin family proton channel promotes cellular acid efflux critical for biomineralization in a marine calcifier.

Proc Natl Acad Sci U S A. 2021-7-27

[6]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

[7]
Molecular and cellular basis of acid taste sensation in Drosophila.

Nat Commun. 2021-6-17

[8]
Cryo-EM structure of a proton-activated chloride channel TMEM206.

Sci Adv. 2021-2-24

[9]
Structures and pH-sensing mechanism of the proton-activated chloride channel.

Nature. 2020-12

[10]
Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients.

Aging (Albany NY). 2019-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索