School of Mathematics and Physics, China University of Geosciences, Wuhan, China.
Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
J Comput Biol. 2022 Nov;29(11):1233-1236. doi: 10.1089/cmb.2022.0244. Epub 2022 Aug 3.
Data integration is a critical step in the analysis of multiple single-cell RNA sequencing samples to account for heterogeneity due to both biological and technical variability. scINSIGHT is a new integration method for single-cell gene expression data, and can effectively use the information of biological condition to improve the integration of multiple single-cell samples. scINSIGHT is based on a novel non-negative matrix factorization model that learns common and condition-specific gene modules in samples from different biological or experimental conditions. Using these gene modules, scINSIGHT can further identify cellular identities and active biological processes in different cell types or conditions. Here we introduce the installation and main functionality of the scINSIGHT R package, including how to preprocess the data, apply the scINSIGHT algorithm, and analyze the output.
数据集成是分析多个单细胞 RNA 测序样本的关键步骤,可解释由于生物和技术变异性引起的异质性。scINSIGHT 是一种新的单细胞基因表达数据集成方法,可以有效地利用生物条件的信息来改善多个单细胞样本的集成。scINSIGHT 基于一种新的非负矩阵分解模型,该模型可以在来自不同生物或实验条件的样本中学习共同的和特定于条件的基因模块。使用这些基因模块,scINSIGHT 可以进一步识别不同细胞类型或条件下的细胞身份和活跃的生物过程。本文介绍了 scINSIGHT R 包的安装和主要功能,包括如何预处理数据、应用 scINSIGHT 算法以及分析输出。