Suppr超能文献

链行走催化理论:从无规树状聚合物到树枝状瓶刷。

Theory of chain walking catalysis: From disordered dendrimers to dendritic bottle-brushes.

机构信息

Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany.

出版信息

J Chem Phys. 2022 Jul 28;157(4):044902. doi: 10.1063/5.0098263.

Abstract

The chain walking (CW) polymerization technique has the unique property of a movable catalyst synthesizing its own path by creating branch-on-branch structures. By successive attachment of monomers, the resulting architecture ranges from dendritic to linear growth depending on the walking rate, which is defined by the ratio of walking steps and reaction events of the catalyst. The transition regime is characterized by local dendritic sub-structures (dendritic blobs) and a global linear chain feature forming a dendritic bottle-brush. A scaling model for structures obtained by CW catalysis is presented and validated by computer simulation relating the extensions of CW structures to the catalyst's walking ability. The limiting case of linear (low walking rate) and dendritic growth (high walking rate) is recovered, and the latter is shown to bear analogies to the Barabási-Albert graph and Bernoulli growth random walk. We could quantify the size of the dendritic blob as a function of the walking rate by using spectral properties of the connectivity matrix of the simulated macromolecules. This allows us to fit the numerical constants in the scaling approach. We predict that independent of the underlying chemical process, all CW polymerization syntheses involving a highly mobile catalyst ultimately result in bottle-brush structures whose properties depend on a unique parameter: the walking rate.

摘要

链行走(CW)聚合技术具有独特的性质,即移动催化剂通过创建分支结构来合成自己的路径。通过连续连接单体,根据催化剂的行走步数与反应事件的比例定义的行走速率,所得结构从树枝状到线性生长。过渡区的特点是局部树枝状亚结构(树枝状团块)和全局线性链特征形成树枝状刷。提出了一种用于 CW 催化获得的结构的标度模型,并通过计算机模拟进行了验证,该模拟将 CW 结构的延伸与催化剂的行走能力相关联。恢复了线性(低行走速率)和树枝状生长(高行走速率)的极限情况,并且表明后者与 Barabási-Albert 图和 Bernoulli 生长随机游走具有相似性。我们可以通过模拟大分子的连通性矩阵的谱特性来量化作为行走速率函数的树枝状团块的大小。这使我们能够拟合标度方法中的数值常数。我们预测,无论基础化学过程如何,所有涉及高迁移率催化剂的 CW 聚合合成最终都会导致刷状结构,其性质取决于一个独特的参数:行走速率。

相似文献

3
Dendritic brushes under good solvent conditions: a simulation study.在良溶剂条件下的树突刷:模拟研究。
Langmuir. 2012 Dec 11;28(49):17176-85. doi: 10.1021/la3039957. Epub 2012 Nov 30.
6
Persistence Length of Dendritic Molecular Brushes.树枝状分子刷的持久长度
ACS Macro Lett. 2012 Oct 16;1(10):1166-1169. doi: 10.1021/mz3003903. Epub 2012 Sep 18.
9
New methodologies in the construction of dendritic materials.树枝状材料构建中的新方法。
Chem Soc Rev. 2009 Feb;38(2):352-62. doi: 10.1039/b711745k. Epub 2008 Nov 25.
10
Dendrimers as artificial enzymes.作为人工酶的树枝状大分子。
Curr Opin Chem Biol. 2005 Dec;9(6):656-64. doi: 10.1016/j.cbpa.2005.10.013. Epub 2005 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验