Zitzmann Carolin, Dächert Christopher, Schmid Bianca, van der Schaar Hilde, van Hemert Martijn, Perelson Alan S, van Kuppeveld Frank J M, Bartenschlager Ralf, Binder Marco, Kaderali Lars
Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
bioRxiv. 2022 Jul 25:2022.07.25.501353. doi: 10.1101/2022.07.25.501353.
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.
Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.
正链RNA病毒是最大的病毒群体。许多正链RNA病毒是给社会经济带来负担的人类病原体。有趣的是,正链RNA病毒在复制过程中具有显著的相似性。正链RNA病毒的一个标志是对细胞内膜进行重塑以建立复制细胞器(即所谓的“复制工厂”),这些细胞器为复制酶复合物提供了一个受保护的环境,该复合物由病毒基因组和病毒RNA合成所需的蛋白质组成。在本研究中,我们调查了这一高度相关病毒群体生命周期中的泛病毒相似性和病毒特异性差异。我们首先在免疫受损的Huh7细胞系中测量了丙型肝炎病毒(HCV)、登革热病毒(DENV)和柯萨奇病毒B3(CVB3)的病毒RNA、病毒蛋白和感染性病毒颗粒产生的动力学,因此不受固有免疫反应的干扰。基于这些测量结果,我们开发了一个关于HCV、DENV和CVB3复制的详细数学模型,并表明在模型中只需进行微小的病毒特异性改变就能描述不同病毒的动态变化。我们的模型正确地预测了病毒特异性机制,如宿主细胞翻译关闭和复制细胞器的不同动力学。此外,我们的模型表明,抑制或关闭宿主细胞mRNA翻译的能力可能是复制效率的关键因素,这可能决定急性自限性感染或慢性感染。我们进一步分析了潜在的广谱抗病毒治疗方案,发现靶向病毒RNA翻译,尤其是多蛋白切割,以及病毒RNA合成可能是所有正链RNA病毒最有前景的药物靶点。此外,我们发现仅靶向复制酶复合物的形成并不能在感染早期阻止病毒复制,而抑制细胞内运输过程甚至可能导致病毒生长加剧。
正链RNA病毒包括一大类相关且与医学相关的病毒。由严重急性呼吸综合征冠状病毒2引起的当前全球新冠疫情,以及登革热和基孔肯雅热等疾病的持续传播,表明对正链RNA病毒感染进行全面而精确分析的必要性。正链RNA病毒在其生命周期中具有相似性。为了解它们在宿主体内的复制策略,我们开发了一个数学模型,研究三种正链RNA病毒,即丙型肝炎病毒、登革热病毒和柯萨奇病毒的泛病毒相似性和病毒特异性差异。通过将我们的模型与数据拟合,我们发现只需在模型中进行微小的病毒特异性变化就能描述所有三种病毒的动态变化。此外,我们的模型预测,参与病毒RNA翻译的核糖体似乎是正链RNA复制效率的关键因素,这可能决定急性或慢性感染的结果。此外,我们的药物治疗分析表明,靶向参与多蛋白切割的病毒蛋白酶,结合病毒RNA复制,可能是具有广谱抗病毒活性的有前景的药物靶点。