Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
PLoS Comput Biol. 2023 Apr 4;19(4):e1010423. doi: 10.1371/journal.pcbi.1010423. eCollection 2023 Apr.
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.
正链 RNA 病毒是最大的病毒群体之一。许多正链 RNA 病毒都是人类病原体,会给社会经济造成负担。有趣的是,正链 RNA 病毒在复制过程中有许多显著的相似之处。正链 RNA 病毒的一个标志是重塑细胞内的膜结构,以建立复制细胞器(所谓的“复制工厂”),为包含病毒基因组和病毒 RNA 合成所需蛋白的复制酶复合物提供一个受保护的环境。在本研究中,我们研究了这一高度相关的病毒群体的生命周期中普遍存在的相似性和病毒特异性差异。我们首先在免疫功能低下的 Huh7 细胞系中测量丙型肝炎病毒 (HCV)、登革热病毒 (DENV) 和柯萨奇病毒 B3 (CVB3) 的病毒 RNA、病毒蛋白和感染性病毒颗粒的产生动力学,因此没有受到固有免疫反应的干扰。基于这些测量结果,我们开发了 HCV、DENV 和 CVB3 复制的详细数学模型,并表明仅需要对模型进行微小的病毒特异性更改即可描述不同病毒的体外动力学。我们的模型正确预测了宿主细胞翻译关闭和复制细胞器不同动力学等病毒特异性机制。此外,我们的模型表明,抑制或关闭宿主细胞 mRNA 翻译的能力可能是体外复制效率的关键因素,这可能决定急性自限性或慢性感染。我们进一步在计算机上分析了潜在的广谱抗病毒治疗选择,并发现靶向病毒 RNA 翻译,如多蛋白切割和病毒 RNA 合成,可能是所有正链 RNA 病毒最有前途的药物靶点。此外,我们发现仅靶向复制酶复合物的形成并不能在感染早期阻止体外病毒复制,而抑制细胞内运输过程甚至可能导致病毒生长增强。