Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
Microbiol Spectr. 2022 Aug 31;10(4):e0201322. doi: 10.1128/spectrum.02013-22. Epub 2022 Aug 4.
Phytate is the main phosphorus storage molecule of plants and is therefore present in large amounts in the environment and in the diet of humans and animals. Its dephosphorylated form, the polyol -inositol (MI), can be used by bacteria as a sole carbon and energy source. The biochemistry and regulation of MI degradation were deciphered in Bacillus subtilis and Salmonella enterica, but a systematic survey of this catabolic pathway has been missing until now. For a comprehensive overview of the distribution of MI utilization, we analyzed 193,757 bacterial genomes, representing a total of 24,812 species, for the presence, organization, and taxonomic prevalence of inositol catabolic gene clusters (IolCatGCs). The genetic capacity for MI degradation was detected in 7,384 (29.8%) of all species for which genome sequences were available. IolCatGC-positive species were particularly found among and and to a much lesser extent in . IolCatGCs are very diverse in terms of gene number and functions, whereas the order of core genes is highly conserved on the phylum level. We predict that 111 animal pathogens, more than 200 commensals, and 430 plant pathogens or rhizosphere bacteria utilize MI, underscoring that IolCatGCs provide a growth benefit within distinct ecological niches. This study reveals that the capacity to utilize inositol is unexpectedly widespread among soil, commensal, and pathogenic bacteria. We assume that this yet-neglected metabolism plays a pivotal role in the microbial turnover of phytate and inositols. The bioinformatic tool established here enables predicting to which extent and genetic variance a bacterial determinant is present in all genomes sequenced so far.
植酸是植物中主要的磷储存分子,因此大量存在于环境和人类及动物的饮食中。其去磷酸化形式,多醇肌醇(MI),可以被细菌用作唯一的碳源和能源。MI 降解的生物化学和调控在枯草芽孢杆菌和沙门氏菌中被破译,但直到现在,该分解代谢途径还没有得到系统的研究。为了全面了解 MI 利用的分布,我们分析了 193757 个细菌基因组,代表了总共 24812 个物种,研究了肌醇分解代谢基因簇(IolCatGCs)的存在、组织和分类流行情况。对于所有可获得基因组序列的物种,有 7384 种(29.8%)检测到了 MI 降解的遗传能力。IolCatGC 阳性的物种主要存在于 和 中,而在 中则较少。IolCatGC 在基因数量和功能方面非常多样化,而核心基因的顺序在门水平上高度保守。我们预测 111 种动物病原体、200 多种共生菌和 430 种植物病原体或根际细菌利用 MI,这突显了 IolCatGC 为不同生态位的生长提供了益处。 本研究表明,利用肌醇的能力在土壤、共生和致病菌中出乎意料地广泛存在。我们假设,这种被忽视的代谢在植酸和肌醇的微生物转化中起着关键作用。这里建立的生物信息学工具可以预测迄今为止测序的所有基因组中细菌决定因素的存在程度和遗传变异。